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Abstract

Modern single-stage detectors formulate object detection as end-to-end inference of
a fully convolutional neural network without any intermediate stages. While such detec-
tors achieve impressive speed, they often perform poorly compared to two-stage meth-
ods. One potential explanation for this is that feature maps are shared across all objects
comprising a scene, impeding the learning of part-object relationships and compromis-
ing accurate object localization; in contrast to two-stage detectors that process cropped
feature maps.

Inspired by self-supervised learning, we introduce auxiliary part-localization objec-
tives that require no additional annotation and that are dataset-specific. Specifically, we
employ two part-localization auxiliary tasks: i) classification of object parts, represented
as class-agnostic corner and center keypoints of bounding boxes; ii) regression of class-
agnostic vector fields, describing the association of objects and its parts, by having pixels
“cast votes” for the relative directions of the object (or part) they belong to. We show
that such auxiliary supervision improves performance of CenterNet [BET] baseline, a pop-
ular single-stage detection architecture that offers an impressive balance of speed and
performance.

As an additional technical contribution, we also address a discrepancy in the location
of the object centers used for training and inference of the regression head in CenterNet.
Our adaptations result in an improvement of ~2.6 — 3.9 AP on MS COCO test-dev across
various architectures, at a minor cost in run-time speed. Our best performing model with
the DLA34 backbone achieves 39.4 AP at 31 FPS, and our fastest model with the ResNet-
18 backbone achieves 32.2 AP at 71 FPS.

1 Introduction

Object detection is a fundamental task in computer vision that forms the basis of many real-
world applications such as surveillance [[[d], autonomous driving [I4], scene understanding
[[@], and text detection [M] in the wild. It also serves as a basic vision subroutine in many
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Figure 1: Overview of our proposed adaptation to CenterNet. (a) DLA [[H] is used as the
backbone for our best performing model. (b) Part-based auxiliary features and predictions
are additively fused (after upsampling to appropriate resolutions) with the backbone features
that are then decoded into detections.

cross-modal applications that integrate information from multiple modalities and enable ex-
citing applications in robotics. Current state-of-the-art detection methods use deep learning
to simultaneously learn a good feature representation of the image as well as localize and
predict the object instances and their classes, respectively. They can generally be classified
as either two-stage or single-stage detectors.

Two-stage detectors such as Faster RCNN [[3] and Mask RCNN [H] involve an inter-
mediate region proposal step. A region proposal network (RPN) realizes a sparse set of
class-agnostic, rectangular region proposals that have a high likelihood of containing an ob-
ject instance. Subsequently, image features are cropped and aggregated for each proposal
that are, in turn, decoded by the classification and regression heads to predict the object cat-
egories and a refinement of the bounding box localization. Though such systems are trained
end-to-end, during inference, multiple forward passes of the decoder heads are required as
each region proposal is processed separately.

Single-stage detectors, on the other hand, forego the region proposal step and model ob-
ject detection as an end-to-end inference task. An image is input to a fully-convolutional
neural network that encodes it into a latent feature representation, which, in turn, is decoded
directly into classification and regression heads at a resolution that is a fraction of the in-
put image resolution. Each pixel in the output head is held responsible for detecting objects
whose centers (with respect to the output head resolution) lie within it. To detect multiple ob-
jects of different scales and aspect ratios at the same output pixel, a small number of anchor
boxes with predefined scales and aspect ratios are generally considered at each location.

Though single-stage detectors offer near real-time detection speeds, they are severely
limited in terms of accuracy compared to two-stage detectors. This can be attributed to
the absence of Rol cropping and aggregation that two-stage detectors are equipped with.
Extracting Rol crops allows the second-stage decoder network to have a dynamic receptive
field that is dependent on the size of the object instance in a scene. To make it more concrete,
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let f/ denote the features entering the second stage (after Rol cropping and aggregation)
corresponding to an object instance indexed by j. Let the feature maps in the first stage
(backbone network) at layer i be denoted by f;. Then, it is clear that the effective receptive
field (with respect to f;) of features f/1 is larger than or equal to that of features /2 when
the object represented by j; is larger than j,. In contrast, single-stage detectors have a
fixed receptive field across pixels in a given layer with respect to a given previous layer,
irrespective of the sizes of the object instances comprising a scene.

One potential explanation for how this might be affecting the performance of single-stage
detectors is that with a shared feature map across all object instances in a scene, learning
part-object relationships implicitly becomes more challenging. That is, since each pixel has
a fixed receptive field with respect to any given previous layer, features for small objects can
get easily overwhelmed by background clutter or surrounding larger objects. Similarly, for
very large objects, the features captured might only reflect a limited portion of the object.
This makes establishing implicit part-object relationships in the latent space challenging that
are, intuitively, crucial for robust object localization and detection. Two-stage detectors,
on the other hand, process cropped feature maps in the second-stage that are already fairly
localized.

Multi-task learning with auxiliary supervision for detection and localization of object
parts is a promising direction to reduce this discrepancy of accuracy between single- and
two-stage detectors. Recent single-stage detector architectures such as ExtremeNet [E]
model detection as keypoint estimation, where the keypoints correspond to the four extreme
points of an object along the 2D axes of the image plane. These keypoints parametrize
the extreme parts of objects that are subsequently grouped using geometrical constraints to
decode object bounding boxes. This method requires additional labels for the extreme points
of an object in addition to the bounding box annotations, and is prohibitively expensive and
time-consuming to reproduce it on custom object detection datasets. Moreover, explicitly
grouping the detected parts significantly reduces the detection speed.

Inspired by self-supervised learning, in this paper, we ask the following question:

Given an object detection dataset, can auxiliary tasks be designed to localize parts and im-
prove object detection accuracy while i) maintaining a good detection speed and ii) requiring
no additional annotations?

Self-supervised methods learn an effective latent representation of data by modeling
proxy tasks using neural networks where inputs and targets are both functions of unlabeled
data. Recent works [B, B, [, [, IO, I™] explore a variety of proxy tasks that can be for-
mulated to learn effective representations that generalize across many applications. In this
paper, we propose part-based auxiliary tasks that are conditional on a given (labeled) ob-
ject detection dataset where inputs and targets are functions of both data and its annotation.
We employ multi-task learning to enrich the latent representation, thereby, improving the
accuracy of the primary task of object detection while having no overhead of explicitly post-
processing the part-based predictions.

Specifically, we model object parts as corners and center of bounding boxes, and demon-
strate two auxiliary part-based objectives, one as a classification target, and another as a
regression target. Our proxy tasks include i) estimating keypoints of four categories of cor-
ners, namely, top-left, top-right, bottom-left, and bottom-right, agnostic to different object
classes; and ii) regressing pixel-wise vector-fields that cast a vote to the direction of ob-
ject parts relative to itself, also agnostic to the object classes. We choose our proxy tasks
to be agnostic to the object classes as we note that part-based objectives are, intuitively,
more crucial for accurate object localization than for improving object classification since
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localization involves estimating the extent of the object instance in a scene, while accurate
classification can usually be achieved just by local texture recognition [H]. We not only show
that each of these tasks individually improves the detection accuracy but also demonstrate
that a combination of both the tasks boosts the detection performance further.

We evaluate our part-based objectives on CenterNet [BET], a recent single-stage detector
that offers an impressive balance of speed and performance, that serves as a strong baseline.
Figure 1 gives an overview of our part-based extension to CenterNet.

Finally, we address a discrepancy between training and inference of CenterNet where
the regression head is trained at the true object center pixels but inferred at the detected
center pixels. Observing that most prevalent errors in the estimated object centers have a Lo,
distance of 1 from the true center pixels, we propose a novel modification to the regression
head and the loss function to further improve localization.

Our adaptations result in an improvement of ~ 2.6 — 3.9 AP on MS COCO fest-dev (with
a relative improvement of ~ 7 — 13 % over baseline) across various architectures, at a minor
cost in run-time speed. Our best performing model with the DLLA34 backbone achieves 39.4
AP at 31 FPS, and our fastest model with the ResNet-18 backbone achieves 32.2 AP while
running at a speed of 71 FPS.

2 Related works

Anchor-based single-stage detection. Single-stage detection approaches do not employ a
distinct region proposal step, but rather directly output object predictions in the dense image
(or feature) grid. Deformable Parts Models (DPMs) [H], is a prominent early example of
a part-based single-stage detector in the pre-deep learning era. DPMs learn a set of HOG
templates [] modeling objects and their parts at different viewpoints, using an latent-SVM
classifier. These templates are then convolved with the image in a sliding window fashion,
looking for high-confidence matches. DPM variants dominated object detection until the
impact of feature learning became apparent [@, E8]. Motivated by such early part-based
methods, in this paper, we probe if explicit part-based supervision improves deep learning-
based object detection methods.

One of the earliest deep learning-based single-stage detection method with near real-
time speeds is YOLO (You Only Look Once) [Z4] by Redmon et al. They spatially divide
the image into a 7 x 7 grid, in which each cell is “responsible” for up to two object proposals,
predicting objectness (whether an object is present) and class confidence scores, as well as
bounding box coordinates and size (height, width). The entire framework is trained in an
end-to-end manner. However, using a coarse grid and limiting the number of detections per
grid cell compromises recall, especially in the case of small or occluded objects.

These limitations were later addressed in extensions to YOLO [[], as well as in the SSD
framework [[3], with the introduction of anchor boxes. Increasing the size of the anchor set
potentially improves recall but also increases training and inference time, so picking good
anchor priors is important. YOLOV2 [[] uses k-means clustering on the ground truth boxes
of the training set to select anchor priors, while RefineDet [B] introduces an anchor refine-
ment module (ARM), that removes unpromising anchors and refines the ones that survive.

Addressing the limitation of severe class imbalance between positive and negative an-
chors in single-stage detectors, Lin ef al. [[3] introduced focal loss to suppress the gradients
of easy negative examples instead of discarding them that has shown to be markedly more
effective than naive hard negative mining.
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YOLOv3 [[3], a revision of YOLOv2 [[] with incremental improvements such as a
deeper backbone architecture, independent object classifiers in the place of softmax pre-
dictions, detecting objects at multiple scales, offered the best trade-off between speed and
accuracy until a recent work by Zhou et al. [ETl] who introduced CenterNet.

CenterNet [ET] builds on the previous works and simplifies the decoder architecture.
They propose enlarging the output resolution to a quarter of the input image resolution in-
stead of having multiple anchors. Thus, featuring a fine output grid where each pixel can
detect up to a single instance of a particular object class. They employ focal loss, and show
that non-maximal suppression (NMS) is unnecessary and instead simply extract local peaks
in the object classification head to detect bounding box centers. Simiar to previous methods,
they regress the size (height, width) by a separate regression head that is kept class-agnostic.

Such simplifications result in an improvement over YOLOv3 while still running twice as
fast. We, therefore, use CenterNet as our baseline model and propose improving the accuracy
further using part-based objectives.

Keypoint-based single-stage detection. Keypoint-based detectors are a special subclass
of single-stage detectors, that frame object detection as a keypoint estimation task. The
model outputs a heatmap of “keypoints” that can lie on a bounding box [[I] or an object
itself [BA]. The keypoint locations are parametrized as local peaks (generally, in a 3 x 3
window) of the heatmap. These keypoints are then explicitly grouped to define the bounding
box.

One can draw conceptual similarities between keypoint-based methods and part-based
modeling by interpreting object keypoints as “parts”. Many pose estimation works refer the
terms “anatomical keypoints”, “joints”, and “parts” interchangeably. Therefore, part-based
objectives may be framed in terms of keypoints.

CornerNet [[] learns to predict the locations of the top-left and bottom-right corners
(“keypoints”) of the object bounding box for each object class in the dataset. It also esti-
mates an associative embedding [[[F] at each of the detected keypoint locations that are then
used to group them together and fully define the object bounding box. Predicting keypoints
for each possible object class scales the output head multiplicatively with the number of
keypoint types k (k = 2 for CornerNet). Moreover, post-processing involved in grouping the
detected keypoints further affects the detection speed. In contrast, we choose class-agnostic
estimation of k = 4 keypoints (corresponding to the corners of bounding boxes) as one of
our part-based auxiliary objectives.

ExtremeNet [BX], on the other hand, uses four extreme points on the object boundary in-
stead of the bounding box corners for keypoint estimation, and, therefore requires additional
annotation. In contrast, our part-localization objectives require no additional labels.

3 Technical approach

In the following sections, we start by reviewing CenterNet that serves as our baseline model,
then we introduce notation, and describe our proposed extension in more detail. Throughout
the text, whenever we refer to pixel coordinates or offsets, these are with respect to the res-
olution of the output feature map of the network, unless otherwise specified. Also, note that
upper case letters with a hat denote predicted outputs of the network while the corresponding
lower case letters denote the ground truth values (unless explicitly mentioned otherwise).


Citation
Citation
{Redmon and Farhadi} 2018

Citation
Citation
{Redmon and Farhadi} 2017

Citation
Citation
{Zhou, Wang, and Kr{ä}henb{ü}hl} 2019{}

Citation
Citation
{Zhou, Wang, and Kr{ä}henb{ü}hl} 2019{}

Citation
Citation
{Law and Deng} 2019

Citation
Citation
{Zhou, Zhuo, and Kr{ä}henb{ü}hl} 2019{}

Citation
Citation
{Law and Deng} 2019

Citation
Citation
{Newell, Huang, and Deng} 2017

Citation
Citation
{Zhou, Zhuo, and Kr{ä}henb{ü}hl} 2019{}


6 PART-BASED OBJECT DETECTION: BHASKARA ET AL. (APRIL 2020)

3.1 CenterNet: Overview

CenterNet takes a W x H x 3 sRGB image, I, as input, and outputs a class-specific heatmap
Y eo, 1}%X%XC, where W, H are the image width and height, respectively, R = 4 is the
downsampling factor between the input image and the output heatmap, and C is the number
of object categories. Ideally, f/xw = 1 when the center of an object belonging to category ¢
falls inside the grid cell denoted by (x,y), and = 0 otherwise. To recover from discretization
errors, introduced from downsampling, the network also predicts 0,a class-agnostic % X
% x 2 map of offsets between the discretized and the absolute true center coordinates in the
output heatmap. Finally, the network outputs another class-agnostic % X % X 2 map, S, of
height and width predictions that are used to fully define an object bounding box, given its
center.

The regression output heads, namely, the size and offset heads, are trained to minimize
the L1 loss computed at the ground truth (GT) center pixels of object bounding boxes com-
prising an image. The respective loss terms (per image) can be written as

51ze—*ZHSLle z| Z| W,’|, and

O, — (Pi— LpiJ)’ : 1)

EOH:N; !

where i indexes an object instance, p; is the vector of real valued coordinates of the bounding
box center in the output resolution, |p; | is the discretized pixel coordinates, and s; = (w;, ;)
is the ground truth size (height and width) of the object i. The classification head is trained
with penalized focal loss (normalized by the number of objects), treating the center pixels as
positives and the rest as negatives. This is given by

— Yoy )%log(Yeye)  at center pixels,
. 1=Yiyc)*log(Ye,, pixel
Lotoss = = 1= Y, )P (F)® )
TN x§’c ( : x(y1°) ?( x")") otherwise,
081 = Yxye

(- Lpin)2+(nyp,-J>-)2>
207

Gaussians centered at center pixel coordinates |p;| of objects i that belong to class c. The

variance 67 is dependent on the bounding box size, following CornerNet [IT], to smoothly

penalize pixels farther away from the object centers. The final, combined loss function is
L= £class + )~0ff »Coff + )vsize Esizea (3)

with Ao = 1.0, Agize = 0.1, @ =2, and f = 4.

During inference, CenterNet finds objects in an image by i) extracting peak locations
(within a 3 x 3 neighborhood) {(%;,9;)} for each object class from the predicted center
heatmaps Y; ii) refining them using the predicted offsets { (8%, 69:)}t € 0; iii) retrieving
the width {#;} and height {A;} of the corresponding boxes from § at the detected center
pixels. The coordinates of the top-left and the bottom-right corners of bounding box indexed
by i are simply inferred as

where Y, , . = maX;c.exp (— is the maximum value at (x,y) among

wi ok wi R
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respectively. For notational convenience, in the rest of the text we refer to the decoder
network responsible for predicting the tuple {Y,O,S} as the “detector branch”, and refer Y
and {O,S} as the “classification head” and “regression head”, respectively.

3.2 Part-based extension to CenterNet
3.2.1 Corner keypoints as object parts

We propose augmenting CenterNet with an additional decoder branch that estimates part-
based corner keypoints across object classes. We consider detecting regions of the image for
four classes of corners, namely, k € {top-left, top-right, bottom-left and bottom-right}. We
compute class-agnostic heatmaps f(comers €[0,1] x4 for different corner keypoints in an
identical way to the center heatmaps of the detector branch.

Ideally, f’comers|x7y7k = 1 when an object corner (irrespective of the object class) of type k
falls inside the grid cell denoted by (x,y). The auxiliary head is trained using the penalized
focal loss in Eq. (2), i.e.,

1 (1~ Yeomers k) * 108 (Feomers k) at comner pixels,
Leomers = iN ng (1 — Yeorners |x,y{<)ﬁ (?Comers |X=>’*k ) * otherwise, @
log( 1- Yeorners |x,y,k)

2

(r—[pf 1) +0—[pf]y)°

207

where Yeomers |x,yk = Max; exp (— ) is the maximum value at (x,y) among

Gaussians centered at corner pixel coordinates Lpi‘J of corner type k across all objects in-
? is dependent on the bounding box size as before. We use

dexed by i. The variance o;
identical hyperparameters (&« = 2, B = 4) as used for the classification head of CenterNet.

3.2.2 Pixel-wise vector-field casting votes for object parts

In this section, we propose a part-based regression task where each pixel in the output head
predicts a unit vector that “casts a vote” for the likely locations of object parts (parametrized
as corners and center of bounding boxes). The pixel-wise predictions estimate regions of the
image plane where object parts might occur based on a local context around the individual
pixels. Such a training objective, intuitively, encourages latent representations that make
context around parts more discriminative and informative.

We propose an additional decoder branch that estimates the pixel-wise vector-field Vi
where each pixel casts vote for the relative direction of an object part of type i (where i can
be one of four corners or center of bounding boxes) likely occurring. We represent the vector
field by two channels denoting the x and y components of the unit vector predicted at each
pixel. That is, V' is of dimensions ¥xixo.

Determining the ground truth vector-field when a scene contains a single object is straight-
forward. Each pixel should ideally be voting for the keypoint of a unique object that is
present in the image. PVNet [ uses a similar representation and a RANSAC-based voting
scheme to estimate a single keypoint that lies within or outside the image plane. Unlike the
simple case, object detection on general scenes has to deal with multiple, potentially over-
lapping, objects. In such cases, which one of the keypoints should each pixel in V! vote for?
We resolve this ground truth assignment ambiguity after establishing notation.


Citation
Citation
{Peng, Liu, Huang, Zhou, and Bao} 2019


8 PART-BASED OBJECT DETECTION: BHASKARA ET AL. (APRIL 2020)

For convenience of notation, let k; = (k' , k% ) represent a keypoint of object j and type i,
and w; and & denote the width and height of object j. Let B(x,w;, ;) represent a rectangular
region that is centered at x with width and height (w;,k;), respectively. Let p denote an
arbitrary pixel coordinate (py, py) € V'.

We assume the context around a given keypoint scales with the size of the object to
which the keypoint belongs to. Therefore, we only consider pixels within a region enclosed
by a hypothetical rectangular box B(k;, wij,h;j) to carry enough context for the keypoint k’J
Pixels p ¢ U, B (kf, wy, hy) are not assigned any ground truth unit vector and are masked out
during training since such regions, far away from any object, carry weaker context. Pixels
pc< ﬂ,B(k;x7kfy,wl,hl) that belong to an overlapping region of context for more than one
keypoint are assigned ground truth votes based on a “affinity” score di(p) of a pixel p to a
keypoint k, that we define subsequently.

We summarize the ground truth assignment of votes to pixels (px, py) € Vi for keypoint
of type i as follows:

masked from training it p ¢ U, Bk, wy,hy),
. [ —p
Vi = ¢ K] -pll2+e
Largmaxke{k;}l dg(p)]-p
I\Largmaxkg{k;}] d(p)]-pll2+e

else if p € B(k’;,w;,h;) and p ¢ B(K},w;, b))Vl # j,

otherwise,
()

where {k}} ; denotes the set of all keypoints of type i across objects present in the image, and
the affinity score di(p) is defined as

dy (p) = max IoU{B(p,w', ), B(K;,w;,h;)}, (6)

that represents the maximum IoU (intersection-over-union) score between an arbitrary rect-
angular box centered at p and the box B(ki]-,w j»hj). (See supplementary material for more
details).

We train the vector-field outputs to minimize the L1 regression loss given by

. 1 A ,
‘Ci/ectors = Z A HV;) - Vi”‘
peU; B(kiwp i) P

, ™

where Vi, are the ground truth votes and A}, represents the area of the object bounding box

whose keypoint the pixel p votes for.

3.2.3 Fusing auxiliary features and predictions into the primary decoder network

We fuse the auxiliary predictions and features into the detector branch additively. Specifi-
cally, we concatenate the auxiliary predictions and the features preceding it, apply a 3 x 3
convolution, followed by a ReLU non-linearity. These transformed part-based features are
then added to the features of the detector branch at various scales after bilinear upsampling to
make the dimensions commensurate. More details on the fusion architecture across various
backbones can be found in the supplementary material.
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Figure 2: Distribution of L., error between predicted center pixels and the ground truth center
pixels, for CenterNet on the MS COCO val dataset.

3.3 Repurposing the regression head

CenterNet decodes bounding boxes as rectangular boxes centered at the predicted center key-
point pixels with dimensions (width, height) that are inferred from the regression branch (at
the predicted center pixels). But during training, the center keypoints and the size regression
outputs are trained only at the true center pixels. Therefore, an erroneous center keypoint
prediction, retrieves an imperfect size estimate, compounding the overall localization error
of the detections further.

Figure 2 analyzes the distribution of center keypoint localization errors in the baseline
CenterNet model. Evidently, about 35% of the errors are single-pixel displacement errors
from the true centers (L., error of 1).

We modify the regression head of CenterNet such that the network is no longer con-
strained to decode detections as centered boxes about the predicted (and possibly erroneous)
center estimates. Specifically, we repurpose the regression head {6, S} to predict E, a class-
agnostic % X % x 4 map of offsets from a candidate center pixel to the four edges of the
bounding box.

We train pixels around the true centers within a 3 x 3 window to predict the offsets to the
four edges of the ground truth bounding box. This enables the regression head to compensate
for single-pixel errors in the center estimates by predicting appropriate offsets to the edges
such that the detections can be fully recovered.

Since detections are decoded at the local peaks of the center heatmap )% during inference,
we might want to emphasize gradients at such local peaks during training as well. Therefore,
we weight the gradients to the regression head at each pixel p by the maximum probability
f’l;"‘”‘ = max, Y, pepy.c Of it being a center keypoint across object classes (note that we don’t
track gradients for the weighting term back to the keypoint outputs). This emphasizes train-
ing the pixels that are local peaks in the center heatmap. We compute the following loss for
training the offsets to the edges

1 N {ZP€W3><3([’i) Yl;nax ) HEP _epHI } (8)

Leg S = N7 Z
ge offsets O max
NS Lpews,s(p) Yp' " +€

where N is the number of objects in the image, W3.3(p;) denotes a 3 x 3 window of pixels
around the true center p; of object i and ep, is the vector of true offsets to the edges.

Given the predicted offsets Ep = (W, Wy, fz,ﬁb) to the edges at a local peak X = (£, ) of
the center heatmap, we decode the coordinates of the top-left and the bottom-right corners
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of the inferred bounding box as

()= &=y, $—Dy), and (7,cl") = (& 4+, $+1p).

Xy

4 Experiments

We evaluate our model on the MS COCO [[[A] dataset, using the DLA [[H] and ResNet
[B] backbone architectures. Figure 1 sketches an overview of our adaptations to CenterNet
with the DLA backbone. A detailed illustration of the baseline model architectures and our
adaptations are presented in the supplementary material. Our final model with both the part-
based auxiliary tasks achieves the best performance. The complete training objective is given
by

L= Lejass + A ﬁedge offsets T O Leomers + ﬁ ﬁveclors; 9

L getector £auxiliary

where Lyectors = ¥ Lhectors ad A = 0.1, o0 = 0.3, f = 0.035.

All the networks are trained on images with a resolution of 512 x 512, after resizing and
padding to preserve the aspect ratio. Following [B1], we use random flip, random scaling
and cropping, and color jittering as data augmentations. We use the ADAM optimizer [[[]
with a batch size of 128 at a learning rate of Se-4. The training schedules are not tuned and
left at the defaults used by the baseline CenterNet model.

4.1 Results

Table 1 shows our ablation studies on COCO val with the DLA architecture trained for 140
epochs (1x). We perform inference in the original image resolution on a single NVIDIA P100
GPU. Augmenting CenterNet with part-level keypoint estimation improves AP from 36.6 to
37.8 (+1.2 points) with a minor impact on the inference speed. Similarly, the vector-fields
result in an improvement of 1.4 AP over the baseline (from 36.6 to 38.0). Using both together
results in a total improvement of ~ 2.4 AP, indicating that the two representations carry
complementary information. Finally, using our edge-offset representation for regressing the
box sizes, adds a further improvement of 0.2 AP.

To disentangle performance gain due to the larger number of parameters given the two
additional auxiliary decoders, we rerun our part-based CenterNet model (without the repur-
posed regression head) on DLA1x backbone with o and 8 set to zero (i.e., no auxiliary
supervision through the loss). We observe 37.8 AP on COCO val which is about 1.2 AP
lower than the case when explicit part-based supervision is provided.

Table 2 compares our final model with the baseline on COCO test-dev. Our model im-
proves AP by 2.6, 3.2, and 3.9 points on DLLA34, ResNet-101, and ResNet-18 backbone
architectures, respectively, using no augmentations at test-time. Improvements are consis-
tent for different IoU thresholds, object sizes, and test-time augmentation schemes, and are
more pronounced at high IoU thresholds (APys), verifying our model’s effectiveness in re-
ducing localization errors. Our best model with the DLLA34 backbone achieves 39.4 AP
running at 31 FPS and our fastest model with the ResNet-18 backbone scores 32.2 AP while
running at an impressive speed of 71 FPS.

Qualitative results of our detections and part-based auxiliary predictions as well as eval-
uations on Pascal VOC detection dataset are available in the supplementary material.
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Auxiliary Tasks  Sizes Encoded AP APs APys FPS
Corners Vectors as Edge Offsets N.A. F MS N.A. F MS N.A. F MS N.A. F MS
X X X 36.6 38.5 41.2 54.1 56.4 59.8 39.7 42.1 44.6 454 25 46
v X X 37.8 40.0 42.3 54.6 57.0 60.3 40.8 43.6 45.6 35.7 204 3.7
X v X 38.0 39.7 42.1 55.2 56.9 60.0 41.4 433 455 35.7 204 3.7
X X v 36.8 39.1 41.2 54.0 56.4 59.5 39.3 419 444 454 25 4.6
v v X 39.0 40.5 42.8 55.8 57.2 60.5 42.1 43.9 46.1 31.3 17.0 3.2
v v v 39.2 40.8 43.0 56.0 57.5 60.4 42.1 44.0 46.1 28.0 17.5 3.2

Table 1: Ablation study of our adaptations on CenterNet with the COCO validation set. The
DLA backbone model is trained for 1x schedule: without test augmentation (N.A.), with flip
testing (F), and with multi-scale augmentation (MS).

Backbone

Init

Model

AP APs APss

APy APy APL

FPS

CenterNet

36.8/39.0/41.5 54.4/56.8/60.2 40.2/42.5/44.9

18.8/20.2/21.9 41.0/42.6/43.4 48.1/50.9/55.8

43.5/250/74.5

DLA342Zx ImageNet ) ¢ 39.4/41.2/43.6 56.1/57.7/60.9 42.1/44.3/46.8  19.6/21.0/233 42.5/44.3/45.8 52.3/54.0/58.0  31.3/172/3.1
DLA3Lx  ImageNet CoMeiNet 365/38.5/412 543/56.5/600 39.6/418/446  18.1/193/213 408/424/43.1 48.1/50.7/556  43.5/250/45
Sdbxe ImageRet - ours 39.2/409/43.2 56.1/57.6/60.8 42.1/44.1/464  19.9/21.3/23.3 42.3/43.9/45.2 51.6/532/57.1  313/17.0/32
ResNet 101 TmageNer  CoMeiNet  345/36.1/39.5 53.3/54.9/59.0 368/38.6/425  14.1/153/19.0 389/40.7/42.0 48.6/504/550  333/217/40
esNe mAgeN Ours 37.7/39.4/42.6 54.9/56.6/60.6 40.2/42.2/458  16.7/18.2/22.2 41.9/43.6/45.2 52.6/54.2/51.7  27.0/16.7/3.1
ResNew 18 ImaseNe CEMErNet 283/30.1/33.6 459/48.0/524 299/32.0/359  9.7/108/ 146 312/33.1/346 41.1/43.4/478  111/714/14
esNet- mageNet o 32.2/340/37.0 48.5/50.3/54.4 34.1/36.1/39.5  12.1/13.5/17.3 34.6/36.6/38.2 45.9/47.9/513  71.4/435/78

Table 2: Performance of our final models on MS COCO fest-dev (with auxiliary tasks and
edge offsets for decoding box sizes).

5 Conclusion

In this work, we propose modeling part-based auxiliary tasks on a given object detection
dataset without requiring additional annotations. We demonstrate two such part-based proxy
tasks, one as a classification problem of detecting corner keypoints across objects of any
class, and another as a regression problem of inferring pixel-wise “votes” for the relative
directions of object parts based on local context around individual pixels.

We show that augmenting such part-based tasks as auxiliary supervision in a multi-task
learning setting, improves the accuracy on the primary task of object detection for Center-
Net, a strong baseline single-stage detector that offers an impressive balance of speed and
accuracy. Finally, we repurpose the regression head of CenterNet to help the network be
robust to the most prevalent type of localization errors. We propose weighting the regression
loss with the center keypoint probability to emphasize training pixels that are local peaks of
the heatmap to address the discrepency between training and inference phases.
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Appendix A: Model Architectures

Figure 1 illustrates our model architecture with the
ResNet-18 and ResNet-101 backbones. Figure 2 illus-
trates our model architecture with the DLLA backbone.

Appendix B: Results on Pascal VOC

We compare the performance of our model with Center-
Net on the Pascal VOC object detection dataset in Table
1.

Appendix C: Maximum IoU of a
given box with arbitrary boxes cen-
tered at a given point

Let B1(0,0, w1, hq) be a given (fixed) rectangular 2D box
centered at O(0,0) with width w; and height h;. Con-
sider a variable box denoted by B(d,,d,,w,h) that is
centered at a fixed coordinate (d,,d,) but has variable
height and width denoted by A and w, respectively. Fig-
ure 3 illustrates the boxes considered. Without any loss
of generality, we assume J, > 0,6, > 0 throughout, un-
less otherwise explicitly specified. We consider a generic
placement of two intersecting boxes, as shown in Figure
3, that satisfies

5w—%> % and (1
Op — % < %, and 2)
O —i—% > %, and 3)
5y—g>—%, and 4
Oy — g < %7 and &)
5y+g % ©6)

These simplify to the following succinct inequality condi-
tions on w and h:

|wy — 26, < w < wy + 20,
|h1—25y| < h < h1+25y.

)
®)

Unless otherwise specified, the above conditions are as-
sumed to hold for the rest of the discussion.

Recall that the intersection-over-union (IoU) measure
of two boxes B; and B is defined as

IoU(B1, B) = I(B1,B)/U(Bu, B),

where
I(By,B) = Ar(B; N B),

and

U(By, B) = At(B, U B)
= Ar(B1) + Ar(B) — Ar(B; N B).

Result In this section, we show that, given a pair of
intersecting bounding boxes B; (fixed) and B (vari-
able) in a generic placement (illustrated in Figure 3), the
IoU(By, B) as a function of w and h (dimensions of the
variable box B) has no local minima or maxima. We
show that the critical points (w*, h*) of ToU (B, B) are,
in fact, saddle points.

This, in turn, means that there cannot be a tuple (1, 71)
that maximizes [oU (B, B) and simultaneously does not
lie on the boundary of the space spanned by valid (w, h)
tuples (“validity” is defined by the inequalities in Eq. (7)
and (8), for instance). The points on the boundary for
the generic placement of boxes chosen in Figure 3 can be
written down explicitly as:

w = |wy £ 26,|, and
h = lhy £ 20,],

which corresponds to four combinations of (w, h) tuples
given by {(|w1 + 20|, |h1 + 26,]), (Jw1 + 2d,|, |h1 —
20,1), (lwr— 284, [l +28,]), (fwy—20,1, [hy—25,])}.
Therefore, it is sufficient to check values at the boundaries
when searching for (i, h) that maximizes IoU (By, B).
Notice that points on the boundary correspond to degen-
erate choices of B that have at least two of its edges
collinear with the edges of the fixed box Bj.

Proof Consider the IoU of the boxes B; and B in Fig-
ure 3 as:

I
IoU = .
U= A(B)) + AB) =1
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Figure 1: Our architecture with ResNet backbone. The numbers in the boxes represent the downsampling factors with
respect to the input resolution. (a) ResNet backbone with output features denoted by b. (b) Decoder architecture for
auxiliary predictions. Following CenterNet, deformable convolutions are used before each up-sampling layer. The
backbone features b are shared among the two decoders for corner keypoint and vector field predictions. Concatenated
features and predictions are denoted by f. and f, for each of the two auxiliary outputs. (c¢) Detector branch uses an
identical decoder network except that the transformed features T (fe) and T (fp) are additively fused to each stage of
transpose convolution, where T denotes upsampling followed by a 3 x 3 convolution and ReL U to keep the dimensions
commensurate for addition. Note that the CenterNet architecture, in comparison, consists only of the ResNet backbone
(shown in (a)) and a decoder (shown in (c)) without any additive fusion operations.
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Figure 2: Our architecture with DLA backbone. The numbers in the boxes represent the downsampling factors with re-
spect to the input resolution. (a) DLA backbone with output features at multiple resolutions denoted by {b1, b, bs, b4 }.
Following CenterNet, we use deformable convolutions in the upsampling stages. (b) Iterative deep aggregation (IDA)
blocks are used as decoders. The backbone features {b;} are shared among the decoders. Concatenated features and
predictions are denoted by f. and f, for the corner keypoints and vector fields, respectively. (c) Detector branch uses
an identical IDA block for estimating the center heatmap and the size offsets. The backbone features {b;} are addi-
tively fused with the transformed features Tl( fe) and TZ( /), where TZ denotes upsampling to match b;’s resolution
followed by a 3 x 3 convolution and a ReLU nonlinearity. CenterNet architecture, in comparison, consists only of the
DLA backbone (shown in (a)) and an IDA decoder (shown in (c)) without any additive fusion operations.
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Backbone  Init Model mAPsgy mAPs19 FPS334 FPSsio
CenterNet 77.92/79.23 78.90/80.31 66.6/43.5 47.6/27.7

DLA34 TmageNet ) ¢ 78.63/79.85 80.24/81.46 47.6/30.3 35.7/19.2
ResNetl0]  TmaeeNeg  CoMENet  75.85/77.10 77.46/78.96 50.0/345 34.5/23.3
& Ours 76.14/77.67 78.09/79.84 40.0/27.7 28.6/18.5

ResNetl8  ImaseNet CoMerNet 70.22/72.41 71.82/74.65 125/100 111/77.0
& Ours 71.16 / 73.45 74.13/76.53 91.0/66.7 71.4/45.5

Table 1: Evaluation of networks on Pascal VOC test2007. We report mAP (at an IoU threshold of 0.5) without
test-time augmentations as well as with horizontal flip averaging. The input resolution is kept fixed at 384 x 384 or
512 x 512, following CenterNet. Timings are reported on our system with a NVIDIA P100 GPU.

r} X "
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Figure 3: Generic placement of a pair of bounding
boxes that intersect. The given (fixed) box is denoted
by B1(0,0,w1,hy) centered at O(0,0) (drawn in red).
A variable box (with variable height h and width w)
is centered at a given point (d,,d,) and is denoted by
B(6g, 0y, w, h) (drawn in grey). Without any loss of gen-
erality, d,, 0, are assumed to be greater than or equal
to zero. Centers and two diagonally opposite corners
(bottom-left and top-right corners) of the boxes are la-
beled.

0(0,0) w o h

This can be rewritten as

I
ToU — Ar(B1)+AIr(B)
L- Ar(B1)+Ar(B)
8
S 1-8
where
I
S =

Ar(By) + Ar(B)’

Since f(z) = &

7= is a strictly increasing function in the

S

interval x € [0, 1), one can conclude that JoU = 125
is strictly increasing in S since 0 < S < 1. Therefore,
IoU and S share the same set of stationary and inflexion
points. We work with S instead of ToU due to its simpler
form.

For the case illustrated in Figure 3, one may write the

area of intersection I as
h
0y — = )| .
(-3)

[ e[

Therefore, S can be written as:

~ =) [% -
w1h1 +wh

(G, -]

oL

Computing the gradient of .S with respect to w and h, we



have the following:

oS 1

O(w,h)  4(wyihy + wh)?

<(h1 +h— 26y)(w1h1 —wih + 2h6w),

(w1 +w —26;)(wirhy — hqw + 2w5y)>.

)
Therefore, for stationary points we have:
@ =0 = wih —w1h+2h5x =0,
ow
% =0 — wlhl —h1w+2w5y :0,

since hq +h—20, > 0 (from Eq. (5)) and wq +w—25, >
0 (from Eq. (2)).

It is easy to see that the symmetric second-order deriva-
tives, namely, g%’; and ‘g%, vanish at the above station-

. . . 2
ary points. Specifically, one can easily show that gwi =0
. . 2
whenever % = 0. Similarly, % = 0 whenever % =0.

But the asymmetric second-order derivative afai - does
not vanish for generic cases. Therefore, the determinant
of the Hessian of S is negative at the stationary points,
implying that these are saddle points.

Hence, we conclude that the optimal height h and width
w for B that maximizes its JoU with B; must lie on the

boundary since the stationary points are saddle points.

Appendix D: Qualitative Examples

Qualitative results of our auxiliary predictions (corner
heatmaps and vector-fields) and final detections are shown
in Figures 4, 5, and 6 for a few samples in MS COCO test-
dev dataset.

L -

Figure 4: Illustration of the auxiliary heatmap predictions
of the corner keypoints. Image 296903 from MS COCO
test-dev, run on our best DLA34-2x model. The top-left,
top-right, bottom-left and bottom-right corners are repre-
sented by purple, grey, greenish-yellow and orange colors,
respectively.



We show a few examples of the predicted vector-field outputs on a MS COCO test-dev image 296903 using

Figure 5

our best DLA34-2x model. The top row illustrates the predicted direction-fields for the center, top-left, and top-right

right and bottom-left corner keypoints.

fields voting for bottom-

respectively. The bottom row shows direction

)

corners
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Figure 6: We show a few qualitative examples of detections on MS COCO test-dev images using our best DLA34-2x
model. Detections with center keypoint confidence scores < (.3 are suppressed from the visualization.



