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Abstract

Prediction of clinical interventions remains an open challenge in health-care. This
task is complicated by data sources that are sparse, noisy, heterogeneous and
outcomes that are imbalanced. An early warning system (EWS) making use of
initial patient information can be helpful to physicians and hospitals to make
clinically actionable planning. In this work, we aim to make a prediction regarding
a patient’s need for critical care. We explore various deep learning architectures
in order to exploit different possible underlying structure in provided data. In
particular, we explore architectures without recurrence, with recurrence, and graph
neural networks. We also propose a data-driven regularization layer to incorporate
diagnosis information into the model without requiring them during inference. Our
models try to learn better patient representation by exploiting additional information
from ICD codes and learning the underlying graphical structure in the dataset.

1 Introduction

Health care data is complex and heterogeneous. It is helpful to have an early warning system (EWS)
built on patient data to assist physicians in decision making. The goal for the project is to assess
the risk of a General Internal Medicine (GIM) patient to experience severe outcomes. This project
aims to evaluate different models to predict GIM ward patient outcome, given only data from the first
24 hours after admission. To this end, we take advantage of the success of deep learning models to
capture rich representations of data with little hand-engineering by domain experts.

2 Background and Related Works

Studies on EWS systems have been performed by multiple hospitals, for example the HEWS in
[12], NEWS in [13]. Both systems measure the physiological parameters from patients and score
the risk on a scale of 0 to 3, where 0 indicates normal behaviours. The physiological parameters
typically include heart rate, respiratory rate, temperature, blood pressure, oxygen saturation, and
level of consciousness. These initial assessments have shown to be effective to predict unanticipated
admission to the ICU or death within 24 hours of a NEWS measurement [13] with an AUC of over
0.85. In our work, additional features, such as labs, medication orders and LDA coefficients over
clinical notes, are also available to build the prediction model.

References to the code and training parameters are available at the private GitHub repository
https://github.com/vinbhaskara/ML4H-GIM-Risk-Assessment. Please email your GitHub username
for access.

https://github.com/vinbhaskara/ML4H-GIM-Risk-Assessment


Another recent work by Nestor et. al. [9] uses similar features from MIMIC to predict mortality. They
evaluate the effect of masking the year of treatment in de-identified data, suggesting that existing
baselines on MIMIC might over-estimate the true performance due to the random train-validation-test
splits. In contrast to MIMIC, our dataset includes the patient admission times to the GIM ward that
can be utilized in making proper validation splits to estimate the true performance.

Work by Esteva et. al. [5] on predicting skin cancer from images shows that a model trained on a
finer disease partition often performs better than the one trained directly on the target classes. Though
our dataset doesn’t comprise of images, we evaluate this idea by exploiting the multiple diagnosis
labels we have at our disposal.

3 Data

The data has been extracted from the St. Michael Hospital Enterprise Data Warehouse (EDW) and
the patient electronic record (Soarian) by the clinical collaborators. The dataset includes structured
variables (e.g. treatment orders, lab results, vitals). The clinical collaborators had processed the
raw data into DataFrames sampled at 8 hour time intervals. They found that shorter time intervals
resulted in many missing values. Missing data was processed similarly to [14]. The data set is from
22,000 patient encounters of 14,000 unique patients from 2011 to 2019. The dataset is split into train,
validation and test sets in 80%, 10% and 10% respectively. The oldest data starting from 2011 is used
as training data; while the newest data is used as test data.

The binary outcome labels are very imbalanced with 8.53% positive outcome only. The positive
outcome labels are further divided into 4 types: transfer to ICU, transfer to palliative care, voluntary
transfer to palliative care and death. In addition, ICD-10 codes are also in the dataset. There are many
possible ICD codes for specific diseases. To avoid large number of codes with low frequencies, we
used the first letter of the ICD-10 code as an intermediate diagnosis code. This results in 21 possible
codes for all encounters. These ICD-10 diagnoses codes can be used as training labels only, because
ICD-10 codes are available months after the outcome occurs.

4 Methods

In the subsequent sub-sections, we summarize the baseline models such as logistic regression, boosted
tree-based classifier (XGBoost [3]), and GRU-D [2], and introduce our proposal of a data-driven
regularization term that better utilizes ICD information. Following this, we discuss the proposed
methods across three wide classes of models, namely, models without recurrent connections (feed-
forward), with recurrent connections, and graph convolutional neural networks. Finally, we show
how ensembling the diverse classes of trained models helps in improving performance across most
metrics like AUC-ROC, AUC-PRC, PPV, Recall, etc.

4.1 Baselines

For non-neural baseline models, we used penalized logistic regression and XGBoost after running a
randomized grid search over the hyperparameters for the best validation performance. As a neural
baseline, we trained a GRU-D [2] model that handles missingness per feature dimension in addition
to capturing the recurrent timeseries information across the three timesteps. For all the models
other than XGBoost, class weights were chosen based on the fraction of encounters with positive
or negative outcome labels to compensate the extreme label imbalance. For the XGBoost model,
hyperparameters such as min_child_weight, that correct for the class imbalance, were picked
based on a randomized grid search using validation AUC.

Two different input representations were used to train the non-neural baselines where the model
architectures aren’t inherently designed for timeseries data unlike GRU-D. The first variant treats each
of the three timesteps in an encounter independently where the label for each time step is taken to be
the same as the last label for the encounter. This input representation does explicit credit assignment
by assigning the final outcome label to each timestep of that encounter. Therefore, the aggregate
statistics when training a model with the entire data would allow it to learn how a feature dimension
correlates with the final target. The second representation concatenates the features across the three
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time steps, thus, increasing the feature dimensions to 2571. This allows timestep dependent weights
to be learned since each feature per timestep is treated as a separate dimension.

Both these representations used for training non-neural baselines do not fully capture the inductive
bias of the data as they don’t involve weight sharing across identical features over different timesteps.
As a baseline that captures the input data pattern well, we train a GRU-D model after making minor
changes (such as increasing the dropout, etc.) to prevent overfitting.

4.2 Incorporating ICD-10 diagnosis codes that are not available during inference

Many EHR data sources such as MIMIC [7] and the GIM dataset described previously include rich
fine-grained information about the final diagnosis in the form of ICD codes. Since these codes are
obtained months after the patient outcome occurs, they cannot be used as input features to the model.
We propose a general technique that we call data-driven regularization to better incorporate such
information into the model without requiring them during inference. Our proposal involves utilizing
the ICD codes as intermediate training labels, in contrast to a previous work by Choi et. al. [4] that
attempts exploiting the diagnosis information using multi-level embeddings (MiME).

As shown in Fig 1b, the softmax output from the ICD codes are concatenated with the output of the
last fully connected layer. The concatenated vector is used as the input to the final softmax layer
of the model. The loss from the ICD code layer is added as a regularization term to the target loss
function.

L(~θ) = LCE(~y,~t) + λ LCE(~yICD,~tICD),

where λ is a tunable regularization hyperparameter (we use λ = 0.5).

Moreover, this regularization term motivates the network to learn better disentangled internal repre-
sentations, and also helps in maintaining sufficient gradient signal using the extra labels available.

4.3 Feed-forward Networks without Recurrence

Recent works based on attention [15, 10, 11] that do not employ recurrent connections have proven
to be extremely successful, especially, for sequence-to-sequence prediction tasks such as Neural
Machine Translation. These models can be thought of as extensions to the feed-forward architecture
proposed original by Bengio et. al. [1] in the context of language modeling and word-embeddings.

Since our task involves a constant number (three) of timesteps (truncated to 8-hr interval) per
encounter, the issue of long-term time dependency is minimal for us. Additionally, since the number
of timesteps considered are few (only 3 per encounter), instead of attention, we could afford fully-
connected layers "attending" to each timestep instead of having the computationally cheaper attention
module that uses a shared layer to compute contextual weights for the general cases of long and
variable length sequences.

We trained a vanilla feed-forward (FNN) architecture with an input embedding layer that is shared
across the three timesteps (see Fig.1a), very similar to the original language model architecture
proposed by Bengio et. al. [1]. But, unlike their architecture, the inputs in our case are continuous
feature values as opposed to one-hot vectors. Therefore, the embedding layer in our architecture is a
fully-connected layer with a tanh(·) non-linearity (to keep the embeddings reasonably bounded),
but not a simple dictionary look-up.

But with the architecture in Fig.1a the feature embeddings are forced to encapsulate the timestep
information as well, in addition to the input feature characteristics, since the weights are constrained
to be the same. Therefore, we factor the feature embedding (see Fig.1b) into positional and input
embeddings that help in partly disentangling the time dimension from the input features. The additive
interaction used between the positional and input embeddings has been inspired by the Transformer
Encoder [15].

We used two layers of fully-connected residual blocks as the intermediate layers. The final hidden
layer also receives the embeddings from the initial layer via a skip-connection to minimize the
information lost across the depth. We heavily employ tricks such as Batch Normalization [6] to
reduce the internal covariate shift (since our features are heterogenous), and Dropout to prevent
overfitting. Our architectures have about half-a-million parameters each.
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(a) Vanilla FNN with shared feature embeddings (b) FNN with shared feature and positional embeddings (with and without
the data-driven regularization layer)

Figure 1: FNN architectures trained.

Based on the observations by Esteva et. al. [5] that finer labels help improving the target prediction
performance, we also evaluate models trained on 5 outcome categories where the original outcome 1
(death or ICU) is split into 4 sub-cases depending on the type of ICU care or death. The final binary
label probabilities are retrieved by summing up the probabilities for the 4 positive outcome labels to
get the total probability for severe outcome.

4.4 Neural Networks with Recurrent Connections

In addition to GRU-D, we train a standard LSTM architecture with a shared input embedding layer
similar to the one discussed above. We also compare the performance of the LSTM with and without
the data-driven regularization layer that incorporates the ICD-10 codes in the training.

Since recurrent connections are radically different than feed-forward connections in terms of the
optimization and decision surfaces, these add to the diversity of the trained models, ultimately helping
to create a better ensemble model.

4.5 Graph ConvNets (GCN)

The analysis with graph convolutional networks is based on the simple intuition that there could
be shared features between the patients, and that viewing the database as a network with some
shared connections can help the model learn a better feature embedding for individual patient
representation. Graph convolutional networks have seen recent success as efficient methods for node
level classification [16]. We wanted to explore if each patient representation can be improved by
aggregating features across the neighbours.

We train the graph convolutional networks on two different learnt embeddings. The first is the learnt
embedding of a 3-step time series data that is passed through a common embedding layer and then
through a vanilla LSTM network. The second is the learnt encounter embedding, where a unique
feature embedding is learnt for each time step and then concatenated together to obtain an encounter-
level embedding. The output of the these models are taken as the input features for the GCN. The
first model is refereed to as the GCN-LSTM-Embed model and the later as GCN-FNN-Embed model.
Graphs are formed on these features based on the minimum-distance criteria in the Euclidean space.
The hyper-parameters for minimum distance and number of neighbours are tuned to ensure that the
networks are not too sparse or too dense. The GCN architecture is based on a vanilla GCN proposed
by Kipf et. al. [8]. We also add the data-driven regularization layer as described previously.
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4.6 Ensemble

We ensemble the XGBoost baseline model with the FNN model having positional encodings using
equally-weighted Geometric Mean showing how this improves performance. We also train an
ensemble XGBoost model on the validation predictions generated by each of the individual trained
models (including the baselines) using XGBoost. We choose XGBoost over Logistic Regression for
ensembling because the probabilities across models are not calibrated.

5 Experiments and Results

5.1 Evaluation

The objective is to predict the binary outcome for a patient based on data collected from only the first
24 hours after admission. We report AUC-ROC and AUC-PRC for all the trained models. We also
report the PPV, FPR score at a target Recall of 75%, and Recall at a target PPV of 20% based on the
production requirements at St. Michael’s Hospital.

Additionally, we also stratify performance of our models across the GIM encounter timestamp in 2
month intervals, gender, length of stay and ICD diagnosis codes to identify the regions where each
model excels. We also summarize the generalization capability by looking at the differences between
Train and Test AUC-ROC scores. The standard deviations reported are based on 3 random seeds.

Table 1: Model performances measured by AUC-ROC score (mean± std), FPR at 0.75 TPR, and
Generalization Gap for ICU/death prediction based on features per encounter.

Models Train Validation Test FPR on Test Train–Test Gap

Non-Neural Baselines
LR 0.8624 0.7696± 0.000007 0.7843± 0.00002 0.3022± 0.0001 0.0781

XGBoost 0.9573 0.8031±0.0021 0.8060 ±0.0006 0.2810±0.0111 0.1513

Non-Recurrent

2 Outcomes 0.8392 0.8024± 0.0015 0.8002 ±0.0052 0.3205± 0.0179 0.039

(Feed-forward)
2 Outcomes + ICD10 0.8397 0.8035± 0.0022 0.7941± 0.0050 0.3376± 0.0331 0.0456

5 Outcomes 0.8252 0.8073± 0.0011 0.7955± 0.0019 0.3217± 0.0219 0.0297

5 Outcomes + ICD10 0.8203 0.8100± 0.0002 0.7953± 0.0030 0.3154± 0.0131 0.025

5 Outcomes + ICD10 + Pos Enc 0.8223 0.8101±0.0006 0.7981± 0.0047 0.2916±0.0051 0.0242

XGBoost over Embeddings 0.9906 0.8040± 0.0044 0.7999± 0.0021 0.3049± 0.0085 0.1907

Recurrent

GRU-D 0.8415 0.7965± 0.0036 0.7958 ±0.0041 0.3046± 0.0158 0.0457

LSTM 0.8292 0.8076± 0.0058 0.7944±0.0036 0.3099± 0.0154 0.0216

LSTM + ICD10 0.8187 0.8023± 0.0047 0.7758± 0.0063 0.3232± 0.0141 0.0429

GCN GCN-FNN-Embed 0.8034 0.8056± 0.0013 0.7779± 0.0027 0.3415± 0.0012 0.0255

GCN-LSTM-Embed 0.8252 0.7820± 0.0006 0.7794± 0.0003 0.3525± 0.0012 0.0459

5.2 Results

Table 1 shows the performance of the models measured by AUC-ROC score, FPR scores at a
target Recall of 75%, and the Generalization Gap (Train–Test AUC). The two non-neural baselines
both show significant overfitting with the largest gap. Neural models have significantly lower
generalization gap compared to the baseline models. The FNN model with a 5-way output softmax,
ICD-10 regularization, and positional encoding achieves the highest validation AUC with the lowest
generation gap of all the models.

Table 2 shows the performance of the models measured by area under precision-recall curve. XGBoost
significantly overfits to the training data. Out of the rest of the models, FNN with 2-way softmax and
LSTM models have the highest test score. FNN with 5-way softmax + ICD10 layer + Pos Enc, and
GRU-D have the highest PPV at 75% recall.

The models are also evaluated by stratifying on gender and length of stay (LOS). Table 3 shows
the AUC-ROC, AUC-PRC and PPV when stratified over gender. The dataset is imbalanced in
terms of gender with 8510 female and 11348 male patients. However, both genders have the same
percentage of positive outcome in the training set. Despite this imbalance, female patients have a
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Table 2: Model performances measured by Area Under Precision-Recall curve (mean± std), Test
Recall at 20% PPV, and Test PPV at 75% Recall for ICU/death prediction based on features per
encounter.

Models Train Validation Test PPV Recall

Non-Neural LR 0.3022 0.2986± 0.00002 0.3022± 0.0001 0.1636± 0.0002 0.7542± 0.0

Baselines XGBoost 0.8214 0.3535±0.0015 0.3625±0.0084 0.1944 ±0.0058 0.7654±0.0079

Non-Recurrent

2 Outcomes 0.3706 0.3284± 0.008 0.3184±0.0081 0.1738± 0.0082 0.7542± 0.0

(Feed-forward)
2 Outcomes + ICD10 0.3698 0.3173± 0.0098 0.2982± 0.0139 0.1671± 0.0132 0.7542± 0.0

5 Outcomes 0.3453 0.348±0.0037 0.2998± 0.0066 0.1738± 0.0098 0.7561± 0.0026

5 Outcomes + ICD10 0.3288 0.3272± 0.0106 0.2891± 0.006 0.1759± 0.0061 0.7542± 0.0

5 Outcomes + ICD10 + Pos Enc 0.323 0.3322± 0.0148 0.2842± 0.0149 0.1874 ±0.0027 0.7542± 0.0

XGBoost over Embeddings 0.9562 0.3522±0.0242 0.3254±0.0034 0.1815± 0.0037 0.7579±0.0026

Recurrent

GRU-D 0.3909 0.3461± 0.0027 0.3174± 0.0063 0.1815 ±0.0077 0.7561± 0.0026

LSTM 0.3519 0.3518±0.01 0.3187±0.0029 0.1793± 0.0077 0.7579±0.0026

LSTM + ICD10 0.3052 0.3166± 0.0144 0.2655± 0.0295 0.1728± 0.0062 0.7561± 0.0026

GCN GCN-FNN-Embed 0.2951 0.2921± 0.0061 0.2603± 0.0055 0.1648± 0.0002 0.7561± 0.0026

GCN-LSTM-Embed 0.2920 0.2840± 0.0003 0.2845± 0.0003 0.1608± 0.0009 0.7579±0.0026

Table 3: Model performance stratified by Gender for AUC-ROC, Area Under Precision score and
FPR at 0.75 TPR for ICU/death prediction based on features per encounter on Test set.

Models AUC-ROC AUC-PR PPV @ 75% Recall

Female Male Female Male Female Male

Non-Neural Baselines
LR 0.8358 0.7601 0.3731 0.2649 0.1853 0.1648

XGBoost 0.8339 0.7954 0.3872 0.3684 0.1897 0.1959

Non-Recurrent

2 Outcomes 0.8429 0.7676 0.3753 0.2776 0.2341 0.1696

(Feed-forward)
2 Outcomes + ICD10 0.8499 0.7760 0.3670 0.2874 0.2388 0.1641

5 Outcomes 0.8511 0.7734 0.3472 0.2994 0.2017 0.1575

5 Outcomes + ICD10 0.8338 0.7771 0.2988 0.2768 0.2192 0.1734

5 Outcomes + ICD10 + Pos Enc 0.8484 0.7714 0.3330 0.2891 0.2275 0.1713

XGBoost over Embeddings 0.8446 0.7766 0.3794 0.2943 0.2182 0.1811

Recurrent

GRU-D 0.8464 0.7778 0.3769 0.3028 0.2152 0.1737

LSTM 0.8507 0.7643 0.3829 0.2852 0.1839 0.1533

LSTM + ICD10 0.8293 0.7635 0.3265 0.2939 0.2330 0.1584

GCN GCN-FNN-Embed 0.8010 0.7591 0.2625 0.2498 0.1672 0.1552

GCN-LSTM-Embed 0.8177 0.7639 0.30545 0.2739 0.1702 0.1676

Ensemble GM of XGB Baseline and FNN with Pos Enc 0.8548 0.7978 0.3973 0.3423 0.2307 0.1802

Ensembling all models using XGB 0.8545 0.7987 0.3928 0.3426 0.2187 0.1869

higher AUC-ROC, AUC-PRC and PPV than male patients across all models. The GCN model has
the lowest difference between the two genders.

The predictions of the models stratified on length of stay is shown in Table 4. Length of stay is
grouped into three bins: less than 3 days, between 3 to 7 days and over 7 days. Out of all encounters,
approximately 30% encounters are less than 3 days, 38% are between 3-7 days and 32% are over 7
days. Across all models, the AUC-ROC, AUC-PRC and PPV are all significantly higher for length of
stay less than 3 days, and lowest for length of stay over 7 days. This is expected because only data
from the first 24 hours are considered.

Since each encounter only has three time steps, models based on treating each time step as an
independent input were also evaluated but were found to perform poorly. LR model treating each
time step independently results in AUC-ROC, AUC-PRC, and PPV of 0.7751, 0.2844 and 0.161,
respectively.
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(a) AUC-ROC across months (b) AUC-PRC across months (c) AUC-ROC across ICD codes

(d) AUC-PRC across ICD codes (e) Generalization across Train–Val–Test based on AUCs on
mean prediction across 3 random seeds per model.

Figure 2: Performance of models stratified across months and ICD Codes in the Validation/Test data
combined.

(a) AUC-ROC across months (b) AUC-ROC across ICD codes (c) Importance of models in the ensemble

(d) AUC-PRC across months (e) AUC-PRC across ICD codes

Figure 3: Performance of the ensemble models compared to the baseline models.
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Table 4: Model performance stratified by length of stay in days for AUC-ROC, Area Under Precision
score and FPR at 0.75 TPR for ICU/death prediction based on features per encounter on Test set.

Models AUC-ROC AUC-PR PPV @ 75% Recall

<3 3<day<7 >7 <3 3<day<7 >7 <3 3<day<7 >7

Non-Neural LR 0.8226 0.7978 0.7144 0.4226 0.3451 0.2251 0.1923 0.1469 0.1485

Baselines XGBoost 0.8462 0.8200 0.7384 0.4285 0.4339 0.3027 0.2672 0.1801 0.1646

Non-Recurrent

2 Outcomes 0.8491 0.7863 0.7278 0.4867 0.3638 0.2348 0.2229 0.1347 0.1568

(Feed-forward)
2 Outcomes + ICD10 0.8509 0.7940 0.7402 0.4334 0.3512 0.2461 0.2365 0.1358 0.1828

5 Outcomes 0.8459 0.7938 0.7355 0.4048 0.3149 0.2556 0.2756 0.1469 0.1592

5 Outcomes + ICD10 0.8055 0.8015 0.7565 0.3484 0.2975 0.2447 0.1584 0.1643 0.1767

5 Outcomes + ICD10 + Pos Enc 0.8394 0.7768 0.7618 0.4134 0.3048 0.2569 0.2059 0.1309 0.2046

XGBoost over Embeddings 0.8540 0.7852 0.7438 0.4853 0.3313 0.2187 0.2713 0.1187 0.1773

Recurrent
GRU-D 0.8273 0.8130 0.7431 0.4412 0.3502 0.2506 0.2333 0.1478 0.1853

LSTM 0.8507 0.7735 0.7358 0.4949 0.3414 0.2261 0.2333 0.1169 0.1773

LSTM + ICD10 0.8236 0.7701 0.7351 0.3984 0.3321 0.2320 0.1852 0.1347 0.1920

GCN GCN-FNN-Embed 0.8185 0.7695 0.7168 0.3441 0.2442 0.2183 0.2035 0.1298 0.1611

GCN-LSTM-Embed 0.8343 0.7559 0.7292 0.3291 0.3248 0.2209 0.2333 0.1190 0.1645

Ensemble GM of XGB Baseline and FNN with Pos Enc 0.8454 0.8164 0.7692 0.4562 0.4065 0.2745 0.2380 0.1432 0.1941

Ensembling all models using XGB 0.8641 0.8085 0.7639 0.4559 0.4125 0.2633 0.2611 0.1802 0.1631

Table 5: Ensemble Model performances measured by AUC-ROC, AUC-PRC, and FPR, PPV at 0.75
Recall, and Recall at 20% PPV for ICU/death prediction on Test set.

Models Test AUC-ROC FPR on Test Test AUC-PRC PPV Recall

Ensemble Models
Geo. Mean of XGB Baseline and FNN with Pos Enc 0.8165 0.2773 0.3598 0.1951 0.7542

Geo. Mean of all models 0.8135 0.3008 0.3592 0.1827 0.7542

Ensembling all models using XGB 0.81687 0.28087 0.3537 0.1931 0.7542

6 Discussion

Tables 1, 2, 3, 4, and Figure 2 clearly show that neural network models excel over the XGBoost
baseline across different regions of various stratifications. Therefore, one expects the ensemble model
to perform even better. Table 5 and Figure 3 also evidently show how the ensemble models perform
better than any individual model in most of the comparisons.

We observe that the performance of a single model saturates around 0.80 AUC on Test/Validation
without exception across the diverse set of models we trained. This can be attributed to the limited
data available for training. Moreover, since many features were binned in the training dataset and
many others binary, the variance of individual feature dimensions across the training cases were not
significant. Such a redundancy in the training data further reduces the effective size of the dataset. To
demonstrate this, we train the XGBoost baseline model on concatenated features across the timesteps
with an incrementally increasing size of the training dataset starting from 100 training samples to
quantify approximately how many of the training examples are really helping.

We also analyze the cumulative variance captured by top n features after PCA both for features per
timestep and concatenated features across timesteps (i.e. features per encounter) to approximately
quantify the redundancy across feature dimensions. Figure 4 shows the learning curve and the PCA
plots.

The learning curve clearly reveals how the test and the validation performances start plateauing
around 6000–8000 samples of the training dataset, reducing the effective size of the total examples
available. The PCA plots also reveal the redundancy of feature dimensions. For instance, we found
that 90% and 99% of the total variance of the training dataset (across timesteps) can be captured
with only 20% (177) and 51.6% (443) of features, respectively, out of 857 total raw dimensions per
timestep. Similarly, PCA of features per encounter (i.e. concatenated features across the 3 timesteps)
reveals that roughly 90% and 99% of the total variance can be captured by a mere 7.5% (193) and
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Figure 4: Learning curve for the baseline XGBoost model trained on concatenated features across
timesteps with incrementally larger training dataset, and Variance explained by top PCA components
per and across timesteps.

28% (730) of total features (2571). Therefore, there is a significant redundancy, both along the
columns and the rows of the training dataset.

The models with ICD-10 diagnosis codes as additional intermediate labels do not show expected
improvements across different metrics (although models with it achieve the best validation AUC in
Table 1. This may be caused by the imbalance in the distribution of the ICD-10 codes. Over half of
the encounters were in 4 out of the 21 possible ICD codes (binned by the first character). In addition,
since the test data are from 2018-2019, approximately 20% of the test data have not been assigned
an ICD-10 code. As a result, they are binned into NaN category, which is not a part of the training
dataset.

7 Limitations

As discussed above, based on our analysis in Fig. 4, we conclude that not only was the size of the
training dataset small, but also the rows and the columns were highly correlated, making the effective
size of the dataset further smaller. Secondly, the target labels were highly disproportionate in number
(10:1 ratio). This was also the case for the ICD diagnoses codes that were used as intermediate labels.

As per the agreement with the collaborators, the team only had access to data at the LKS-CHART
office. We were not given any remote access to the data. On some of the days, the team members had
to share a single laptop to access data and train models.
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