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Abstract. Deep learning methods for super-resolution (SR) have been
dominating in terms of performance in recent years. Such methods can
potentially improve the digital zoom capabilities of most modern mobile
phones, but are not directly applicable on device, due to hardware con-
straints. In this work, we adapt MobileNetV3 blocks, shown to work
well for classification, detection and segmentation, to the task of super-
resolution. The proposed models with the modified MobileNetV3 block
are shown to be efficient enough to run on modern mobile phones with an
accuracy approaching that of the much heavier, state-of-the-art (SOTA)
super-resolution approaches.
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1 Introduction

Enhancing the quality of images taken with digital cameras is useful in a broad
range of both professional and consumer applications, such as photo editing, or
improving the quality of video and image content in TVs and mobile phones,
respectively.

One particular form of image enhancement involves taking an image of rel-
atively low starting resolution and “upscaling” it to create an image of higher
resolution, allowing us to increase the raw size of the image, while producing
fine details. In the context of computer vision and image processing, this task is
called super-resolution (SR) and has traditionally been tackled in two different
ways Classical super-resolution algorithms frame SR as an optimization prob-
lem, which is solved by minimizing the loss between the low-resolution (LR)
input(s) and the projection of the predicted high-resolution (HR) image back to
the low-resolution domain, combined with appropriate regularization [11,15,37].
In other works, the input is not a single, but multiple, slightly misaligned LR
depictions of the same scene, defining a system of linear constraints that pro-
duces the underlying HR image, when solved [9,10,20,39]. The common feature
of all these methods is that they do not require any training; however, this
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advantage is usually offset by slow runtimes due to iterative optimization or ker-
nel approximation schemes, or limited effectiveness for scale factors larger than
×2.

Example-based super-resolution [3,12,13,23], on the other hand, relies on a
dataset of corresponding low-resolution (LR) and high-resolution (HR) images
(or patches). A model is trained to map a single low-resolution input to a high-
resolution output, with a specified upscaling factor. Being fast and able to effec-
tively handle higher scale factors (such as ×4 or ×8) are advantages example-
based methods enjoy over classical approches; the caveat is that, inferring the
ideal LR-to-HR mapping is an ill-posed problem, because there are multiple HR
images that may correspond to a LR input1.

Nevertheless, in the last few years, we have seen an explosion of example-
based methods, especially with the proliferation of deep learning models such as
CNNs [7,22,34] and GANs [27,41]. These models are quite effective in generating
images of high perceptual quality, but they are often cumbersome, having a large
number of parameters and increased time and memory footprint.

These requirements become especially limiting for mobile phone applications.
Zoom, for instance, remains a challenge for mobile phones, since the manufac-
turer must satisfy two conflicting specifications: on one hand, high quality optical
zoom requires a physically large lens; on the other hand, the phone device itself
must remain compact to improve usability and aesthetics. Digital zoom can
potentially be the answer, but the low-power CPUs and GPUs that fit inside a
phone are not powerful enough to run the heavier, state of the art SR networks,
that are designed for desktop computers2.

Lifting the need for such compromises is the main motivation behind our
submission to the AIM 2020 Efficient SR challenge [44]. Our goal is to propose a
deep network that performs comparably to powerful, state of the art models, like
ESRGAN [41] or RCAN [46], while being efficient enough to run on a mainstream
mobile phone device.

There is already a significant body of research on improving the efficiency
of deep CNNs for super-resolution. Some works attempt to design and use
more lightweight architectures, without compromising performance [6,35,44],
while others introduce new modules that improve performance in a cost-effective
way [34]. However, it is still questionable whether these models are applicable
to mobile applications, because their efficiency is evaluated on desktop GPUs
rather than mobile devices, and the output size at test time is usually smaller
than that of a typical photo taken with a mobile phone. In classification and
segmentation tasks, MobileNet architectures [16,17,33] demonstrate promis-
ing performance-efficiency trade-offs. Besides attractive performance in the

1 This is why this task is sometimes called image hallucination.
2 ESRGAN [41] takes 2.69 s on a V100 GPU, and 10.46 GB of memory, to generate a

12MP (3000 × 4000) output – a standard photo size for a mobile camera. Obtain-
ing the same output using mobile phone hardware would be prohibitively slow, or
impossible, due to limited memory.
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literature, the architectures are also widely adopted as the backbone model for
many deep learning applications in computationally constrained environments.

In this work, we adapt the MobileNetV3 [16] architecture design for the SR
task, and propose a deep learning method that can achieve good performance
while running efficiently on a mobile phone, opening up the possibility for on-
device deployment.

We evaluate our approach on 4x super-resolution and show that it approaches
the performance of state-of-the-art (SOTA) methods such as ESRGAN and
RCAN [41,46] while being 40–1000× and 30–1000× more efficient in FLOPs
and parameter size respectively. In addition to achieving a better performance-
efficiency trade-off compared to previous methods, we also showcase an
“extremely lite” variant of our model. The runtime performance of the latter
is fast enough to make direct deployment to mobile devices possible.

2 Related Work

2.1 Deep Learning Models Focusing on Image Quality

Since the seminal work of Dong et al. [7], there has been an steadily increas-
ing interest in Single-image Super-Resolution (SISR) using deep neural net-
works. Network architectures of high representational power [22,27,36,38,41],
including models of visual attention [46], have been proposed to improve fidelity.
Researchers have also explored various loss objectives [28,32,41] to improve the
sharpness of the generated image or make the output more visually pleasing,
according to human perception, with tools such as GANs [41] and perceptual
losses [21] that have been widely adopted. The caveat, however, is that these
trained models have high requirements in terms of memory, processing power,
or both, making their direct application to edge devices impossible.

2.2 Efficient Deep Learning Models

To achieve better trade-off between fidelity and efficiency, a separate line of SISR
research has been focusing on more cost-aware architecture design. Dong et al. [8]
speed up their model using an hourglass-shaped CNN architecture. Shi et al. [34]
and Vu et al. [40] develop subpixel and de-subpixel convolution to approach effi-
cient model inference. Ahn et al. [2] propose a lighter ResNet architecture with
multi-scale cascading connections. Lai et al. [25] address the efficiency require-
ment by progressive reconstruction of the output, using a Laplacian pyramid
in the feature branch. Hui et al. [19] introduce multiple information distillation
blocks, which reduce the computation budget by progressively splitting features
into one half that is merged with the output, and another half that is processed
further.

Apart from manual architecture adaptation, Neural Architecture Search
(NAS) has also been explored for efficient super-resolution. Chu et al. [6] employ
evolutionary algorithms to get the proper parameters for convolution blocks and
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connections among blocks. Song et al. [35] utilize a similar approach to deter-
mine the optimal location of non-linearities and upsampling layers, while also
utilizing efficient Residual Dense blocks.

While these models are a step in the right direction, most of them are still
not efficient enough to stay within the runtime and memory constraints on a
mobile phone. First, the 12MP target output resolution on a typical mobile
phone is much larger than the output size used in research benchmarks; and
second, even flagship mobile phones possess hardware that is much less capable,
compared to desktop GPUs, both in terms of memory capacity, and processing
power. Thus, there is a strong incentive to make models that are even more
efficient, and lightweight enough for mobile deployment. We achieve this by a
network architecture that can bring better trade-off between FLOPs and fidelity
performance, especially, when FLOPs are extremely low.

3 Proposed Method

3.1 MobileNet Architecture Overview

MobileNet [16,17,33] is a family of CNN architectures that are specifically
designed for deployment on lightweight devices. These architectures have shown
promising performance-efficiency trade-offs in computer vision tasks such as clas-
sification, detection and segmentation.

Each member of the MobileNet family builds on its predecessors, bring-
ing new design changes that improve performance. MobileNet [17] introduces
the depth separable convolution (Fig. 1a) that replaces the standard convo-
lution operation, achieving comparable accuracy performance but with much
fewer FLOPs. MobileNetV2 [33](Fig. 1b) proposes inverted residuals, expand-
ing features inside a block so that the representation power of the model
can be improved in a cost-effective way. MobileNetV3 [16](Fig. 1c) additionally
introduces the squeeze-excitation (SE) attention module and a new activation
function (hard-swish), combined with hardware-aware NAS for hyperparameter
tuning.

3.2 Efficient Architecture Using Adapted MobileNetV3 Blocks

We use the most recent MobileNetV3 [16] blocks as the basis for our efficient
super-resolution model. Our architecture takes a single LR image as input, and
passes it through N + 1 modified MobileNetV3 blocks, with a skip connection
(addition) from the output of the first block to the output of the last block.
Contrary to the findings of Lim et al. [28], we found the BatchNorm layers
within the MobileNetV3 blocks to be beneficial to performance; we discuss this
in more detail in Sect. 4.4. The output of the last block is then upscaled using
two pixel-shuffle operations [34] with non-linearities and convolutions. To yield
three channels, post-processing consisting of a depth-wise separable convolution
together with a 1× 1 convolution layer, is applied to the output of the upscaling
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(a) Regular vs depthwise separable convolution (MobileNet V1).

(b) Inverted residuals (MobileNet V2). (c) Squeeze excite + hard-swish non-
linearity (MobileNet V3).

Fig. 1. Features introduced in different versions of the MobileNet architecture.

Fig. 2. Method architecture. NL stands for non-linearity, which we set to LeakyReLU
with a slope of 0.2 for negative values.

result. Finally, the LR input is bicubically interpolated to the 4x higher resolution
and added to the output of the post-processing block using a skip connection. As
a result of this skip connection, the main body of the network is tasked with only
computing an update to the bicubically interpolated image. Figure 2 provides a
visual overview of our architecture.

We modify the MobileNetV3 blocks for SR as follows. Unlike the origi-
nal MobileNetV3, which performs progressive downsampling to increase the
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receptive field size, we operate in the original image resolution, to avoid loss of
detail, as it is customary in modern SR architectures [8,41,46]. The expansion
factor for the blocks, which determines the number of 1 × 1 convolution filters,
is kept fixed to 2 throughout the layers. In Fig. 2, we are showing how a 1 × 1
convolution with an expansion factor of 2 expands a nf -channel input feature
map to a 2nf -channel intermediate feature map before the depth-wise convo-
lution layer. We use LeakyReLU activations (with a slope of 0.2 for negative
values) in place of the default h-swish non-linearity used in MobileNetV3. The
remaining components are identical to the ones used in MobilenetV3, including
batch normalization and the SE attention blocks, with a compression ratio of 4.

Other hyperparameters of our network include the number of blocks N and
the number of features nf in each block. Although the target metric (PSNR) is
a function of the mean squared error, we found training with an L1 loss is still
better than an L2 loss. For our final submission, we set N = 16, nf = 72. We
name this network SAM SR LITE.

Fig. 3. Comparisons in PSNR-Y on BSD100 dataset w.r.t parameter size and operation
count. Dots connected by red lines are our models with different N and nf configura-
tions. From right to left are (nf,N) = (72, 16), (64, 16), (64, 8), (32, 16), (32, 8), (16,
16), (16, 8). Models closer to top left corner are better.

4 Experiments

4.1 Datasets and Implementation Details

Our submitted method (SAM SR LITE) was trained on the combined DIV2K
(800 images) [1] and FLICKR2K (2680 images) [1] datasets. We use 100×100 low-
res image crops, with a batch size of 128, training for a total of 350 K steps. For
data augmentation, we use random cropping, flipping and 90◦ rotations. Learn-
ing rate is initialized to 0.005 and halved at steps [100K, 200K, 250K, 300K].
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Training is done using the Adam optimizer [24] with parameters β1 = 0.9 and
β2 = 0.99. The model is implemented in PyTorch [30].

The results in Table 1 show that SAM SR LITE achieves a validation PSNR
of 28.976 dB, which is on par with the baseline method for the AIM 2020 Effi-
cient Super-Resolution challenge, namely, MSRResNet [41,45]. This is despite
our model using just 18% of the FLOPs and 37% of the parameters (although,
using more activations in total) compared to the baseline model. We measure
FLOPs based on a LR image of size 256 × 256, and the memory reported is the
peak memory allocated during inference on the DIV2K validation set. Activa-
tion size is the total number of elements among all convolutional layers’ output
tensors [31]. Note that by this measure, dpeth separable convolutions will have
twice the number of activations as full convolutions. In this report, we measure
runtime on the DIV2K validation set [1] (having an input size of 421 × 421, on
average), with a NVIDIA RTX 2080 GPU (CUDA 10.1, no cuDNN, PyTorch
1.5.1), unless specified otherwise. We see from Table 1 that, for this environment,
the runtime of SAM SR LITE is about half the baseline’s. Samples of qualitative
results can be found in Fig. 4.

Table 1. Comparison of our submitted model SAM SR LITE with the baseline method
MSRResNet [45]. Our model achieves a performance on par with the baseline while
requiring much fewer FLOPs, memory, and parameters.

Model PSNR-

RGB on

DIV2K val

dataset

PSNR-

RGB on

DIV2K

test

dataset

FLOPs Parameters Runtime Activation Memory

Baseline [45] 29.00 28.70 333.32G 1517K 0.336 s 292.55M 4.37GB

SAM SR LITE 28.98 28.71 58.6G 558K 0.169 s 576.45M 2.56GB

4.2 Trade-Off Between Quality and Efficiency

We have also experimented with lighter versions of our method, the results
are summarized in Table 2 and Fig. 3. In particular, when setting N = 8 and
nf = 16, which we call SAM SR XLITE (for eXtremely light), our method has
18K parameters (∼1% of the baseline), and achieves an inference time of 0.03s
(∼8% of the baseline, using RTX2080), at 2.58G FLOPs (∼0.8% of the baseline),
with a validation PSNR of 28.38 dB. Being 0.62 dB below the baseline perfor-
mance, it was not submitted to the challenge. Nevertheless, we feel this model
is of significant interest since it exhibits a large gain in computational efficiency
(∼130× fewer FLOPs than the baseline) at the cost of a performance loss of 0.5
to 1 dB, where 0.5 dB difference is barely noticeable for casual human observers.
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Fig. 4. Qualitative comparison. SAM SR LITE outperforms bicubic interpolation and
is on-par with MSRResNet [45], while being significantly more efficient than the latter.

4.3 Comparison with Previous Methods

We compare our model with existing models that focus on both efficiency and
image quality. We evaluate on Set5 [4], Set14 [43], BSD100 [29] and Urban100
[18], conventionally used as benchmarks for super-resolution, using the PSNR
and SSIM [42] metrics computed on only the Y channel of the YCrCb color
space. In order to align with test results in the literature, we retrained our models
using only DIV2K (without observing any significant differences compared to our
models trained on both DIV2K and FLICKR2K). Table 3 shows the results of the
comparisons. The SAM SR LITE model achieves slightly higher PSNR-Y scores
compared with previous methods with roughly similar, or smaller, operation
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Table 2. Trade-off between generated image quality and efficiency for proposed model
family. Note that the FLOPs and activations are calculated for the 256×256 input. The
reported quantitative metrics are PSNR-Y and SSIM-Y, respectively, across different
datasets.

nf N FLOPs # Params Runtime Activation Set5 [4] Set14 [43] BSD100 [29] Urban100 [18]

72 16 58.6G 558.54K 0.169 s 576.45M 32.36/0.8968 28.71/0.7826 27.56/0.7363 26.18/0.7881

64 16 47.02G 444.9K 0.142 s 512.75M 32.24/0.8956 28.68/0.7817 27.56/0.7361 26.11/0.7864

64 8 27.84G 233.96K 0.093 s 344.98M 32.09/0.8938 28.54/0.7784 27.46/0.7325 25.86/0.7774

32 16 13.38G 119.28K 0.075 s 257.95M 32.00/0.8924 28.48/0.7768 27.42/0.7319 25.79/0.7758

32 8 8.08G 62.96K 0.051 s 174.06M 31.85/0.8903 28.39/0.7740 27.36/0.7290 25.54/0.7667

16 16 4.16G 33.85K 0.045 s 130.55M 31.75/0.8885 28.30/0.7721 27.30/0.7264 25.42/0.7625

16 8 2.58G 17.98K 0.029 s 88.60M 31.48/0.8843 28.12/0.7675 27.20/0.7226 25.18/0.7526

counts and parameter sizes. Specifically, consider all methods in Table 3 that
have fewer than 1M parameters and require less than 100GFLOPs (i.e., the
models in the first six rows, up to and including IMDN). We observe that our
model has the highest PSNR (including one tie) among these seven methods,
providing small PSNR increments of +0.15 dB (Set5), +0.13 dB (Set14), 0 dB
(BSD100), and +0.14 dB (Urban100) over the previous best.

Moreover our second model, SAM SR XLITE, has less than 5% of the num-
ber of parameters and FLOPs as SAM SR LITE, and exhibits a loss of at most
1 dB in PSNR performance over the different test sets (specifically, the PSNR
difference between the XLITE and LITE models are −0.88 dB (Set5), −0.59 dB
(Set14), −0.36 dB (BSD100), and −1.00 dB (Urban100)). Recall that the differ-
ence between these two models is only in two of the hyperparameters, namely
the number of blocks, N (16 versus 8), and the number of features per block,
nf (72 versus 16). Indeed, we show in Fig. 3 that by selecting different values for
these hyperparameters we obtain models that cover a wide range of trade-offs
between PSNR performance and computational cost. For current mobile appli-
cations, where computational constraints are severe, we are interested in more
lightweight models, such as SAM SR XLITE (Figs. 5 and 6).

4.4 Ablation Study

We conduct three sets of ablation experiments to investigate the impact of spe-
cific components in our architecture design. We first experiment with replacing
the batch normalization (BN) and the squeeze and excite modules, each with
the identity mapping. A third variation of our model removes the LR to HR
bicubically interpolated skip connection.

We observe that batch normalization results in a significant performance
improvement for our LITE model (i.e., +0.44 dB with BN), contrary to [28]. How-
ever, batch norm only brings tiny improvement to XLITE model (i.e., +0.02 dB).
The skip connection also has a beneficial effect for both LITE (+0.27 dB) and
XLITE model (+0.31 dB). This is likely because adding a bicubically inter-
polated image provides a good baseline for the low-frequency content of the
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Table 3. Comparison between our model and efficient models in the literature. Note
that the FLOPs are calculated for the 720P (1280 × 720) output. The reported quan-
titative metrics are PSNR-Y and SSIM-Y, respectively, across different datasets.

Model FLOPs # Params Set5 [4] Set14 [43] BSD100 [29] Urban100 [18]

FSRCNN [8] 9.2G 12K 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280

FEQE-P [40] 11.0G 96K 31.53/0.8824 28.21/0.7714 27.32/0.7273 25.32/0.7583

ESRN-V [35] 41.4G 324K 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782

LapSRN [25] 59.8G 813K 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560

CARN-M [2] 65.0G 677K 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694

IMDN [19] 88.9G 715K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838

ESRN [35] 132.2G 1,014K 32.26/0.8957 28.63/0.7818 27.62/0.7378 26.24/0.7912

CARN [2] 181.8G 1,592K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

RCAN [46] 1839.86G 15.6M 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087

ESRGAN [41] 2068.26G 16.7M 32.60/0.9002 28.88/0.7896 27.76/0.7432 26.73/0.8072

SAM SR XLITE 2.2G 18K 31.48/0.8843 28.12/0.7675 27.20/0.7226 25.18/0.7526

SAM SR LITE 51.5G 559K 32.36/0.8968 28.71/0.7826 27.56/0.7363 26.18/0.7881

Fig. 5. Qualitative comparison on Urban100 [18]. SAM SR LITE outperforms other
previous methods [2,19] with similar FLOPs and parameter size.

high-resolution image, thereby, allowing the model to focus on adding just the
high-frequency details. The SE module is seen to provide a marginal improve-
ment in image quality (+0.01 dB) for both LITE and XLITE model, which may
be removed for more lightweight models. See Table 4 for more details.

Moreover, we fuse the batch norm layer to its preceding convolution layer
to optimize the inference time without any performance change [26], see Table 4
under SAM SR LITE FUSED. Although it does not improve FLOPs signifi-
cantly, the fused model improves runtime by around 18%. Note that the fused
model was explored after the challenge deadline and was not submitted to the
challenge.
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Fig. 6. Qualitative comparison on Set14 [43]. SAM SR XLITE outperforms bicubic
intepolation, SRCNN [7] and FSRCNN [8] and on par with FEQE-P [40], while being
4 − 6× smaller in operation size.

Table 4. Ablation study on SAM SR LITE and SAM SR XLITE. Runtime is mea-
sured in the same environment as Table 1. (*The SAM SR XLITE has a different vali-
dation performance here than the one in Table 2 as it was trained with a smaller input
patch size of 64 × 64.)

Model PSNR-RGB

on DIV2K val

dataset

FLOPs Parameters Runtime Memory

SAM SR LITE 28.98 58.6G 558K 0.169 s 2.56GB

w/o batch norm 28.55(−0.44) 57.0G(−1.6G) 546K(−12K) 0.138 s(−0.031 s) 2.50GB(−0.06GB)

w/o skip connection 28.71(−0.27) 58.6G(∼0.0G) 558K(0.0K) 0.166 s(−0.003 s) 2.56GB(∼0.0GB)

w/o SE 28.97(−0.01) 58.6G(∼0.0G) 393K(−165K) 0.155 s(−0.014 s) 2.56GB(∼0.0GB)

SAM SR LITE FUSED 28.98(0.0) 57.0G(−1.6G) 546K(−12K) 0.139 s(−0.030 s) 2.50GB(−0.06GB)

SAM SR XLITE* 28.35 2.58G 17.98K 0.030 s 0.65GB

w/o batch norm 28.33(−0.02) 2.4G(−0.18G) 16.54K(−1.44K) 0.027 s(−0.003 s) 0.65GB(∼0.0GB)

w/o skip connection 28.04(−0.31) 2.58G(∼0.0G) 17.98K(0.0K) 0.029 s(−0.001 s) 0.65GB(∼0.0GB)

w/o SE 28.34(−0.01) 2.56G(−0.02G) 13.88K(−4.1K) 0.028 s(−0.002 s) 0.65GB(∼0.0GB)

5 Inference Time

5.1 Disparity Between FLOPs and Runtime

Typically, a lower number of FLOPs implies a faster runtime, when measuring
runtime efficiency. However, in our experiments we notice a palpable disparity
between the expected runtime performance of our model and the one observed in
practice. Results from AIM 2020 organizers indicate that in their environment,
the SAM SR LITE is approximately two times slower than the baseline [44],
while requiring only 18% of the FLOPs. We have two observations regarding
this disparity.

Currently, optimized depth-wise convolution operations are not well sup-
ported by some deep learning frameworks, including PyTorch [30]. For example,



98 H. Wang et al.

note the open issue in the PyTorch repository [14] showing that the inference run-
time of a single depth-wise convolution layer Conv2d(32,32,3,groups=32) is at
best only ∼ 3× faster than a regular convolution layer Conv2d(32,32,3), despite
having a 32× smaller operation count. A fair comparison would be to use depth-
wise separable convolutions; that is, depthwise convolutions Conv2d(32,32,3,
group=32) followed by pointwise convolutions Conv2d(32,32,1). This operation
requires 14% FLOPs of a regular convolution Conv2d(32,32,3), but takes 81%
of the inference time for regular convolution (using PyTorch on a V100 GPU).
Depthwise separable computations are a key design element of MobileNetV3
blocks, and subsequently, of our model as well. Therefore, any improvement in
their efficiency would directly affect the runtime of our model.

In addition, we observed that our model does not fully take advantage of
cuDNN [5]. Table 5 shows that cuDNN results in different speed-up factors for
our model and for the MSRResNet baseline [45]. Much to our surprise, the
challenge [44] organizers measured an even slower inference time using a better
RTX 2080Ti GPU than our testing machine with a RTX 2080 GPU. In short,
the inference time of our model varies from being 20% faster to being over
twice slower than the baseline model as a function of software and hardware
combination.

For these reasons, we argue that the number of operations (FLOPs) is a
better measure for the computational efficiency of our model.

5.2 Activation Size as a Proxy for Runtime

The activation size is first analyzed as a proxy for performance in [31], with the
authors reporting a strong correlation of the activation size of convolution layers
with runtime. The AIM challenge organizers [44] also find that the activation
size has a better ranking correlation with runtime compared to other complexity
metrics (FLOPs, parameter size, memory).

We also investigate the correlation between runtime and activation size in
our family of models by sampling models with various capacities. We find that
for our family of models there is a strong linear correlation between runtime and
all other complexity metrics (activation size, FLOPs, and parameter size); see
Fig. 7. Thus, different from the finding in [31], for our models activation size is
no more informative than the other metrics.

Evaluation of model complexity w.r.t. the activation size [44] puts our fam-
ily of models at a disadvantage. A standard replacement of regular convolu-
tion with a depth separable convolution (a depthwise convolution followed by
a pointwise convolution) will double the activation measurement, while blocks
in MobileNetV3 would have an even larger activation size due to the internal
expansion factor. As a result, despite the lower FLOP count, our models may
be slower in runtime than models from different families with smaller activation
size.

Finally, it is worth noting that, the strong correlation between activation
size and runtime on memory-bound accelerators (desktop GPUs and TPUs)
[31] may not translate to mobile phone accelerators, which have considerably
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lower computational resources. Moreover, we believe that optimizing memory
(e.g., pre-allocation of activations for a fixed input) for specific applications will
reduce the impact of memory on runtime.

5.3 Runtime on Mobile Devices

Since the environment we are targetting for applying our models is the phone, we
deploy a slightly modified SAM SR XLITE on a Samsung Note 10 to evaluate
the runtime on an actual mobile device. We first perform the required conversion
of the model from PyTorch to a Snapdragon Neural Processing Engine (SNPE)
Deep Learning Container file. It takes our model 1.41 s to generate a 12MP image
and 0.8 s for its 8-bit quantized version. Although the model cannot achieve real-
time inference on the mobile devices, it is already deployable for many mobile
applications such as zooming in mobile camera.

Table 5. Running time under different configurations for SAM SR LITE and baseline
model. The running time is computed by averaging across 5 rounds per image (after 5
rounds warm-up on the same image).

GPU CUDA cuDNN PyTorch OS Running Time-

SAM SR LITE/

baseline

Note

RTX 2080 10.1 Disabled 1.5.1 Ubuntu 16.04 0.2137 s/−(OOM) Our results

RTX 2080 10.1 7.6.3 1.5.1 Ubuntu 16.04 0.1668 s/0.1240 s Our results

V100 10.1 Disabled 1.5.1 Ubuntu 16.04 0.1188 s/0.1488 s Our results

V100 10.1 7.6.3 1.5.1 Ubuntu 16.04 0.0892 s/0.0680 s Our results

RTX 2080Ti 10.2 7.6.5 1.5.1 Ubuntu 0.240 s/0.114 s From challenge organizers

Fig. 7. Correlation between runtime and flops, activation and parameter in the pro-
posed model family. The Q in the x-axis refer to flops

6G
, activation

30M
and parameter

50M
.
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6 Conclusion and Future Work

Motivated by efficient super-resolution models for mobile applications, in this
paper, we have proposed a set of efficient architectures that use adapted
MobileNetV3 blocks. Our models achieve better trade-off between quality and effi-
ciency than the current state-of-the-art in efficient super-resolution. The smallest
of these, namely SAM SR XLITE, has an extremely small operation and param-
eter count, making it possible to be deployed on real mobile applications.

While being orders of magnitude more efficient in parameter size and opera-
tion count, the inference time of our models in PyTorch is, currently, less impres-
sive. This is partly due to the limited optimization currently supported by the
available software and hardware for deep learning and potentially large acti-
vation size. Considering the resource constrained devices as the final running
environment of efficient SR models, the runtime on desktop GPUs may not fully
reflect the runtime in actual applications. Still, optimizing the implementation
of operators on both GPUs and edge devices, specifically depthwise convolu-
tions, is a promising future direction for efficient super-resolution for real-time
applications.
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L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 243–259. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11021-5 16

41. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Yu., Loy, C.C.: ESR-
GAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé,
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