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Concurrence, introduced by Hill and Wootters [Hill and Wootters, Phys. Rev. Lett. 78, 5022 (1997)], provides
an important measure of entanglement for a general pair of qubits that is strictly positive for entangled states and
vanishes for all separable states. We present an extension of the entanglement measure to general pure continuous
variable states of multiple degrees of freedom by generalizing the Lagrange’s identity and wedge product frame-
work proposed by Bhaskara and Panigrahi [Bhaskara and Panigrahi, Quantum Inf. Process. 16, 118 (2017)] for
pure discrete-variable systems in arbitrary dimensions and extending the concept to mixed continuous-variable
states. A family of faithful entanglement measures is constructed that admits necessary and sufficient conditions
for separability across arbitrary bipartitions presented by Vedral et al. [Vedral, Plenio, Rippin, and Knight, Phys.
Rev. Lett. 78, 2275 (1997)]. The computed entanglement measure in the present approach for general Gaussian
states, pair-coherent states, and non-Gaussian continuous-variable Bell states matches with known results. We
also quantify entanglement of phase-randomized squeezed states and superposition of squeezed states. Our
results also simplify several results in quantum entanglement theory.
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I. INTRODUCTION

Quantum entanglement, having played a fundamental role
in quantum information theory, is also finding its context
in deeper questions, including on the origin of space-time
[1], quantum field theories [2], many-body physics [3], Berry
phase [4], and quantum gravity [5]. Detecting the presence of
such a resource and quantifying it faithfully for the general
case of continuous-variable systems would have far-reaching
applications beyond quantum computation.

Previous works, including the extensions of Peres-
Horodecki criteria by Simon [6], Agarwal [7], and Werner
[8]; nonlinear maps on matrices by Giedke et al. [9]; and
criteria based on uncertainty principles by Duan et al. [10]
and Hillery, Nha, and Zubairy [11,12], for continuous-variable
(CV) systems have provided the necessary conditions for the
class of non-Gaussian states for manifesting quantum optics.
Note, however, various geometry-based approaches exist to
quantify entanglement [13–18]. In this paper, we provide a
family of faithful measures of entanglement, as an extension
to concurrence [14], admitting necessary and sufficient cri-
teria for measurement of entanglement [19] across arbitrary
bipartitions and degrees of freedom for general pure and
mixed CV states, identifying an inherent geometry of entan-
glement in a similar spirit with examples of general Gaussian
states, phase-matched squeezed states, pair-coherent states,
superposition of squeezed states, and non-Gaussian CV Bell
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states. We comment on the connections to the widely used
measures in the concluding section.

II. PRELIMINARIES

We introduce the notion of a genuine entanglement
measure based on the wedge product and the Lagrange-
Brahmagupta identity for discrete-variable systems. In an
n-dimensional complex space, the vectors �p and �q can be
written as �p =∑i piei and �q =∑ j q je j , respectively. The
bivector �p ∧ �q represents an oriented parallelepiped with sides
of vectors �p and �q:

�p ∧ �q =
∑
i< j

(piq j − p jqi )ei ∧ e j .

The Lagrange-Brahmagupta identity takes the form

‖−→a ‖2‖−→b ‖2 − |−→a · −→
b |2 = ‖−→a ∧ −→

b ‖2

for vectors �a and �b in Cm. Without loss of generality,
one can take dA = dim(HA) � dim(HB) = dB. If {|φ′

i〉, i =
1, 2, ., dA} is an orthonormal basis of HA, it follows that

|� ′〉 =
dA∑
i=0

|φ′
i〉〈φ′

i |� ′〉.

Entanglement measure of the bipartition A|B defined in
terms of wedge products [14] of postmeasurement vectors can
be written as

C2
A|B = 4

∑
i< j

|〈φ′
i |� ′〉 ∧ 〈φ′

j |� ′〉|2,

where i and j take values from 0 to dA. The condition for
separability across this bipartition is C2

A|B = 0.
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Maximal CA|B for a particular bipartition A|B will corre-
spond to the following conditions:

〈φ′
i |� ′〉†〈φ′

j |� ′〉 = 0 ∀ i 
= j,

|〈φ′
i |� ′〉| = |〈φ′

j |� ′〉| ∀ i, j.

Two-qubit case. For a two-qubit system, the general state
|ψ〉 in the computational basis is given by

|ψ ′
AB〉 = p|00〉 + q|01〉 + r|10〉 + s|11〉,

where |i j〉 = |iA〉 ⊗ | jB〉 and a, b, c, d ∈ C, satisfying the nor-
malization condition

|p|2 + |q|2 + |r|2 + |s|2 = 1.

The generalized concurrence measure in terms of the wedge
product (as a measure of entanglement) for | ψ ′〉AB has been
obtained earlier as [14,18]

E = 2|〈0A | ψ ′〉 ∧ 〈1A|ψ ′〉|.
These two conditions lead to the general form of maximally
entangled states for a two-qubit system:

āc + b̄d = 0,

|a|2 + |b|2 = |c|2 + |d|2.
We can also get the Bell states

|ψ ′
±〉 = (|00〉 ± |11〉)√

2
,

|φ′
±〉 = (|01〉 ± |10〉)√

2
.

Three-qubit case. The general state is given by

|ψ ′
ABC〉 = a0|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + a4|100〉

+ a5|101〉 + a6|110〉 + a7|111〉,
where ai ∈ C, i = 1–7, satisfies the normalization condition∑7

i=0 |ai|2 = 1. The measure of entanglement E is given by
the sum of concurrence corresponding to all three bipartitions
[14]:

E = EA|BC + EB|AC + EC|AB.

In the wedge product formalism, we can write the concurrence
as

E = 2
∑

i=A,B,C

|〈0i|ψ ′
ABC〉 ∧ 〈1i|ψ ′

ABC〉|.

|� ′
ABC〉 can be written in the following form:

|� ′
ABC〉 = |0A〉〈0A|� ′

ABC〉 + |1A〉〈1A|� ′
ABC〉.

The conditions for maximally entangled states are as follows:
〈0i|ψ ′

ABC〉 must be orthogonal to 〈1i|ψ ′
ABC〉 and |〈0i|ψ ′

ABC〉| =
|〈1i|ψ ′

ABC〉| for each i = A, B, and C. This maximally entan-
gled state (Greenberger-Horne-Zeilinger state) by using the

above conditions is defined as

|ψ ′〉 = 1√
2

(|000〉 + |111〉).

We then explicitly explain in the next section a much more
refined and efficient form of generalized entanglement mea-
sure (GEM) for continuous-variable systems that is based on
the extended wedge product and the Lagrange-Brahmagupta
identity. The main advantage of our proposed GEM is that
less computational effort is required for its evaluation.

III. GENERALIZED ENTANGLEMENT MEASURE (GEM)
FOR PURE CV STATES

We define separability for pure states in the context of
CV systems for future convenience. Consider an n-degree-of-
freedom quantum system. Let P|Q be a bipartition across the
degrees of freedom of this composite (whole) system P ∪ Q,
with respective infinite-dimensional Hilbert spaces HP and
HQ for the states of the subsystems P and Q, and then the state
space of the composite system is given by the tensor product
H = HP ⊗ HQ. If a pure state |ψ〉 ∈ H of the composite
system with ρψ = |ψ〉〈ψ | can be written in the form

|ψ〉 = |φ〉 ⊗ |χ〉, i.e., ρψ = ρφ ⊗ ρχ,

where |φ〉 ∈ HP and |χ〉 ∈ HQ are the pure states of the sub-
systems P and Q, respectively, with ρφ = |φ〉〈φ| and ρχ =
|χ〉〈χ |, then the system is said to be separable across the
bipartition P|Q. Otherwise, the subsystems P and Q are said
to be entangled.

Consider a general n-degree-of-freedom pure CV state
|ψ〉 with the degrees of freedom taking continuous values
and labeled by {x1, x2, . . . , xn} in an orthonormal basis with
〈 �x′|�x〉 = δ(�x − �x′) and

∫ |�x〉〈�x| d�x = 1 as

|ψ〉 =
∫

φ(x1, . . . , xn)|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉d�x, (1)

with 〈ψ |ψ〉 = 1, i.e.,∫
φ∗(x1, . . . , xn)φ(x1, . . . , xn)d�x = 1,

where �x = (x1, x2, . . . , xn), d�x ≡ dnx = dx1dx2 . . . dxn, and δ

is the Dirac delta function of appropriate dimension. Note that
the limits of the integrals are over the appropriate continu-
ous range of values for the degrees of freedom (commonly,
−∞ to +∞) unless otherwise specified. By an n-degree-of-
freedom system one could mean, for instance, a system of n
particles in one spatial dimension, a system of k particles in
three dimensions where n = 3k, or a quantum optics system
having multiple modes. The physical state |ψ〉 exists in an
infinite-dimensional Hilbert space spanned by {|x〉}. Note that,
unlike the case of discrete-variable (DV) systems, the basis
states {|x〉} by themselves are not normalizable and hence are
nonphysical.

The generalized entanglement measure (GEM) for pure
CV states will now be defined as

E2
M = 2

[
1 −

∫∫ ∣∣∣∣∣
∫

φ(y′
1, y′

2, . . . , y′
m, xm+1, . . . , xn)φ∗(y1, y2, . . . , ym, xm+1, . . . , xn)dn−mx

∣∣∣∣∣
2

dmydmy′
]
. (2)
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We can define

�̃(X ) = 〈X |NT
1 |ψ〉〈X |NT

2 |ψ〉 = φ(N1X )φ(N2X ), (3)

N1 = [1n×n 0n×n]n×2n, N1 = [0n×n 1n×n]n×2n,

M =
[

1m×m

0(n−m)×(n−m)

]
2n×2n

, ∧m =
[

1n×n − Mn×n Mn×n

Mn×n 1n×n − Mn×n

]
2n×2n

.

Equation (5) can be written in terms of φ and ∧m as

E2
M = 2

[
1 − Re

∫
�̃(X )�̃∗(∧mX )d2nX

]
. (4)

Proposition. The state ψ is said to be separable across the bipartition M|M if and only if ψ is expressible as

|ψ〉 =
∫

φ(x1, x2, . . . , xn)|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉d�x

=
[ ∫

φM(x1, . . . , xm)|x1 . . . xm〉dmx

]
⊗
[ ∫

φM(xm+1, . . . , xn)|xm+1 . . . xn〉dn−mx

]
. (5)

Proof. Consider the bipartite separability of a particular set M of m degrees (m < n) out of the n degrees of freedom of the
system. Without any loss of generality, let the m degrees be labeled by {1, 2, . . . , m}, so that the degrees labeled by {m + 1, m +
2, . . . , n} represent the rest of the (n − m) degrees of freedom belonging to the complement set M. The state |ψ〉 is said to be
separable across the bipartition M|M if and only if |ψ〉 is expressible as[ ∫

φM(x1, . . . , xm)|x1 . . . xm〉dmx

]
⊗
[ ∫

φM(xm+1, . . . , xn)|xm+1 . . . xn〉dn−mx

]
,

where φM is the normalized pure state of the subsystem M, |x1 . . . xm〉 ≡ |x1〉 ⊗ · · · ⊗ |xm〉, dmx ≡ dx1dx2 . . . dxm, and similarly
φM is the normalized pure state of the subsystem M, |xm+1 . . . xn〉 ≡ |xm+1〉 ⊗ · · · ⊗ |xn〉, and dn−mx ≡ dxm+1dxm+2 . . . dxn.

One may rewrite the state |ψ〉, defined in Eq. (1), as∫ [
|x1 . . . xm〉 ⊗

(∫
φ(x1, . . . , xn)|xm+1 . . . xn〉dn−mx

)
dmx

]
.

By noting that

〈x′
1x′

2 . . . x′
m|ψ〉 =

∫
φ(x1, . . . , xn) 〈x′

1x′
2 . . . x′

m|x1x2 . . . xn〉︸ ︷︷ ︸
δ(x1−x′

1,...,xm−x′
m )|xm+1...xn〉

dnx =
∫

φ(x′
1, x′

2, . . . , x′
m, xm+1, . . . , xn)|xm+1 . . . xn〉dn−mx,

one may express |ψ〉 as

|ψ〉 =
∫

[|x1 . . . xm〉 ⊗ (〈x1x2 . . . xm|ψ〉)dmx]. (6)

Observe that, for the separability of |ψ〉 across M|M, each of the vectors 〈x1x2 . . . xm|ψ〉 in Eq. (6) must be mutually
“parallel” for the m degree-of-freedom state to factor out; i.e., for each �r = (r1, r2, . . . , rm) one needs

〈r1r2 . . . rm|ψ〉 = c�r�s〈s1s2 . . . sm|ψ〉
for any �s = (s1, s2, . . . , sm), where c�r�s is some complex scalar, for separability. This becomes evident once one chooses, say,
(s1, s2, . . . , sm) = (0, 0, . . . , 0) = �0, so that

〈r1r2 . . . rm|ψ〉 = c(r1, r2, . . . , rm)〈00 . . . 0︸ ︷︷ ︸
m

|ψ〉,

where c(r1, r2, . . . , rm) is some complex scalar. Substituting this back in Eq. (6), one can see the state becomes separable (with
constant k ensuring the normalization of each of the subsystem’s states) as

|ψ〉 =
∫

[|x1 . . . xm〉 ⊗ c(x1, x2, . . . , xm)〈00 . . . 0|ψ〉dmx] =
(

k
∫

|x1 . . . xm〉c(x1, x2, . . . , xm)dmx︸ ︷︷ ︸
state of M

)
⊗ 1

k
〈00 . . . 0|ψ〉,︸ ︷︷ ︸

state of M

|ψ〉 =
(∫

φ(x1, . . . , xm)|x1 . . . xm〉dmx

)
⊗ (φ(0, . . . , 0, xm+1, . . . , xn)|xm+1 . . . xn〉dn−mx). (7)
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Interestingly, therefore, one may note that, even if a single “pair” of elements of the continuous, infinite set of vectors
{〈x1x2 . . . xm|ψ〉} over the continuous variables x1, . . . , xm is not mutually parallel, this adds to the presence of entanglement.
We express this condition for separability using the notion of a wedge product extended to multivariable complex-valued function
spaces based on the framework proposed in Ref. [14] for general pure discrete-0variable systems in arbitrary dimensions.

Theorem. If a single pair of elements of the continuous, infinite set of vectors 〈x1 . . . xm|ψ〉 over the continuous variables
x1, . . . , xm is not mutually parallel, the family of faithful measures of entanglement across the bipartition M|M is defined as

E2
M = 2

[
1 −

∫∫ ∣∣∣∣∣
∫

φ(y′
1, y′

2, . . . , y′
m, xm+1, . . . , xn)φ∗(y1, y2, . . . , ym, xm+1, . . . , xn)dn−mx

∣∣∣∣∣
2

dmydmy′
]
. (8)

Proof. In geometric algebra [20], the wedge product of two vectors is seen as a particular generalization of cross products to
higher dimensions. We construct such a notion for the case of complex, infinite-dimensional vector spaces. Consider two vectors
�a and �b in the complex, infinite-dimensional space as

�a =
∫

f (�x)|�x〉d�x, �b =
∫

g(�x)|�x〉d�x

in the continuous orthonormal basis set {|�x〉}, with 〈 �x′|�x〉 = δ(�x − �x′) and
∫ |�x〉〈�x|d�x = 1, where �x = (x1, . . . , xn). Then the

wedge product of �a and �b in the interval (�t, �u) is defined as a bivector in an “exterior” space with the continuous basis set
{|�x〉 ∧ | �x′〉}x′>x, stipulating that |�x〉 ∧ | �x′〉 = −|�x′〉 ∧ |�x〉 and |�x〉 ∧ |�x〉 = 0, as

�a ∧ �b =
∫ �u

�x=�t

∫ �u

�x′=�x
[ f (�x)g( �x′) − f ( �x′)g(�x)]|�x〉 ∧ | �x′〉d �x′d�x,

where �t = (t1, t2, . . . , tn) and �u = (u1, u2, . . . , un). Therefore, one may note �a ∧ �b = 0 ⇐⇒ �b = k�a, and �a ∧ �b = −�b ∧ �a, by
definition, for some complex scalar k and vectors �a and �b.

This notion of an extended wedge product allows one to write the separability condition in a compact and useful form. Since
one requires that each of the vectors in the continuous set {〈x1x2 . . . xm|ψ〉} to be mutually “parallel” for the separability across
M|M, their mutual wedge products must vanish, equivalently, for separability. This is a necessary and sufficient condition for
separability as noted before. Hence, one may construct a family of faithful measures of entanglement, parametrized by f , p, and
q, across the bipartition as

EM =
[∫∫

f (||〈y′
1y′

2 . . . y′
m|ψ〉 ∧ 〈y1y2 . . . ym|ψ〉||p)dmydmy′

]1/q

,

where f : R → R with f (x) = 0 iff x = 0 so that EM = 0 ⇐⇒ separability, in addition to f being a monotonic and strictly
increasing function in R+ and q ∈ R+ so that EM > 0 measures entanglement faithfully; the p-norm is computed in the basis
{|xm+1 . . . xn〉 ∧ |x′

m+1 . . . x′
n〉}x′>x, and 〈y′

1y′
2 . . . y′

m|ψ〉 ∧ 〈y1y2 . . . ym|ψ〉 ≡∫ +∞

�x=−∞

∫ +∞

�x′=�x
[φ(y′

1, y′
2, . . . , y′

m, xm+1, . . . , xn) φ(y1, y2, . . . , ym, x′
m+1, . . . , x′

n)

− φ(y′
1, y′

2, . . . , y′
m, x′

m+1, . . . , x′
n) φ(y1, y2, . . . , ym, xm+1, . . . , xn)] |xm+1 . . . xn〉 ∧ |x′

m+1 . . . x′
n〉 dn−mx′ dn−mx. (9)

The Lagrange’s identity takes the form

||�a||2||�b||2 − |�a.�b|2 = ||�a ∧ �b||2.
By this identity, one may rewrite the entanglement measure E2

M constructed as follows:(∫ u

t
| f (�x)|2d�x

)(∫ u

t
|g(�x)|2d�x

)
−
∣∣∣∣∣
∫ u

t
f (�x)g∗(�x)

∣∣∣∣∣
2

=
∫∫ u

t
| f (�x)g( �x′) − f ( �x′)g(�x)|2d �x′d�x,

E2
M = 2

∫∫ [(∫
|φ(y′

1y′
2 . . . y′

m, xm+1, . . . , xn)|2dn−mx

)(∫
|φ(y1y2 . . . ym, xm+1, . . . , xn)|2dn−mx

)

−
∣∣∣∣∣
∫

φ(y′
1y′

2 . . . y′
m, xm+1, . . . , xn)φ∗(y1y2 . . . ym, xm+1, . . . , xn)dn−mx

∣∣∣∣∣
2]

dmydmy′,

E2
M = 2

[
1 −

∫∫ ∣∣∣∣∣
∫

φ(y′
1y′

2 . . . y′
m, xm+1, . . . , xn)φ∗(y1y2 . . . ym, xm+1, . . . , xn)dn−mx

∣∣∣∣∣
2

dmydmy′
]
, (10)
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noting the normalization of φ. This may elegantly be written
in terms of � and 	m as

E2
M = 2

[
1 − Re

∫
�(X)�∗(	mX)d2nX

]
. (11)

Hence, for maximal entanglement, one needs �(X) and
�(	mX) to be orthogonal, i.e., their inner product must
vanish, so that E2

M takes the maximum value of 2. On
the contrary, when �(X) = �(	mX), their inner product
takes the maximum overlap of 1, thereby implying sepa-
rability with E2

M = 0. This is one of the important results
of the paper on the geometry of entanglement in CV pure
systems.

A. Gaussian CV states

We consider the example of a general pure Gaussian CV
state to evaluate our criterion and provide the condition for
separability, and we analyze the GEM for the case of a general
two-mode Gaussian state:

ψ1(x1, . . . , xn) = N1 exp

⎛
⎝−1

2

⎡
⎣ n∑

k=1

akx2
k +

n∑
k, j; j>k

ck jxkx j

⎤
⎦
⎞
⎠,

(12)
where ak ∈ R, ak � 0, ck j ∈ C, and N1 is the appropri-
ate normalization term for the wave function. Consider
the separability of m degrees labeled by x1, . . . , xm from
the n available degrees of freedom. For separability across
the m|(n − m) bipartition, one needs

exp

(
− 1

2

[
m∑

k=1

aky′2
k +

n∑
k=m+1

akx2
k +

k, j=m∑
k, j=1; j>k

ck jy
′
ky′

j +
k=m, j=n∑

k=1, j=m+1; j>k

ck jy
′
kx j +

k, j=n∑
k, j=m+1; j>k

ck jxix j

])

× exp

(
− 1

2

[
m∑

k=1

aky2
k +

n∑
k=m+1

akx′2
k +

k, j=m∑
k, j=1; j>k

ck jyky j +
k=m, j=n∑

k=1, j=m+1

ck jykx′
j +

k, j=n∑
k, j=m+1; j>k

ck jx
′
ix

′
j

])

= exp

(
− 1

2

[
m∑

k=1

aky′2
k +

n∑
k=m+1

akx′2
k +

k, j=m∑
k, j=1; j>k

ck jy
′
ky′

j +
k=m, j=n∑

k=1, j=m+1

ck jy
′
kx′

j +
k, j=n∑

k, j=m+1; j>k

ck jx
′
ix

′
j

])

× exp

(
− 1

2

[
m∑

k=1

aky2
k +

n∑
k=m+1

akx2
k +

k, j=m∑
k, j=1; j>k

ck jyky j +
k=m, j=n∑

k=1, j=m+1

ck jykx j +
k, j=n∑

k, j=m+1; j>k

ck jxix j

])
.

This simplifies to the requirement

k=m, j=n∑
k=1, j=m+1

ck j (y
′
kx j + ykx′

j ) =
k=m, j=n∑

k=1, j=m+1

ck j (y
′
kx′

j + ykx j ),

which can only be true for arbitrary values of y′
i, xi, x′

i , and yi,

iff

ck j = ∀ k ∈ [1, m] and j ∈ [m + 1, n], or

Vk, j = V T
k, j = 0 ∀ k ∈ [1, m] and j ∈ [m + 1, n], or

MV (1n×n − M) = MV T (1n×n − M) = 0n×n, (13)

where V =∑−1 is the inverse of the covariance matrix
of the Gaussian. This is a necessary and sufficient condi-
tion for separability of the general Gaussian wave function
ψ1(�x) in n degrees of freedom across the bipartitions m|(n −
m). Moreover, one may say that the system is entangled
across the bipartitions iff ∃ k, j such that ck j 
= 0 for some
k ∈ [1, m] and j ∈ [m + 1, n].

To analyze the GEM for the case of a general two-mode
Gaussian state,

ψ2(x1, x2) = N2e− 1
2 (ax2

1+bx2
2+cx1x2 ), (14)

where a, b ∈ R, a, b > 0, and c is either purely real or imagi-
nary, and

N2 =
[

2π√
4ab − c2

] −1
2

if c is real

=
[

π√
ab

] −1
2

if c = im, m ∈ R,

with i ≡ √−1. Using Eq. (12), one may compute the GEM
across the modes as

E2
M = 2

[
1 −

√
4ab − c2

2
√

ab

]
if c is real

= 2

[
1 − 2

√
ab√

4ab + m2

]
if c = im, m ∈ R.

Clearly, E = 0 iff c = 0 for both the cases. The entanglement
depends on the parameter c. When c is real, one requires
−2

√
ab < c < 2

√
ab, so that the state remains normalizable

and hence physical. For this case, as c → ±2
√

ab, E2 → 2.
When c is purely imaginary with c = im, m ∈ R, as m →
±∞, E2 → 2 asymptotically.
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FIG. 1. Variation of the entanglement measure (E2
m ) for a pair-

coherent state with |ξ |. All the axes are dimensionless.

B. The pair-coherent state

The pair-coherent state [21] is given by

|ξ, 0〉 = 1√
I0(2|ξ |)

∑ ξ i

i!
|i, i〉, (15)

where I0(2|ξ |) is the modified Bessel function of order zero.
By using the GEM for pure states, for separability across the
m|(n − m) bipartition, one needs∑

NiiN
′
j j |i, j〉〈i, j| =

∑
Nj,iN

′
j,i| j, i〉〈 j, i|. (16)

For i 
= j, by using Eq. (12), the entanglement measure is
given by

E2
M = 2

[
1 − 1

I0(2|ξ |)2

∑ |ξ |4i

i!4

]
. (17)

We plot the GEM for the pair-coherent state (15) with |ξ | in
Fig. 1. Clearly, for nonzero values of |ξ |, (E2

m) is nonzero.
This implies entanglement in the pair-coherent state. For small
values of |ξ |, (E2

m) increases slowly, and then it saturates at
larger values.

C. Superposition of squeezed states

In Ref. [22], the first kind of superposition of the j squeezed
vacuum state which has the same squeezing value in the Fock
basis is given by

|ξ 〉 j = Nj

∑
(−eiθ tanh r) jn

√
(2 jn)!

2 jn( jn)!
|2 jn〉, (18)

where

Nj =
(∑ (2 jn)!

22 jn( jn)!
(tanh r)2 jn

)− 1
2

.

By using Eq. (12), the entanglement measure is given by

E2
M = 0. (19)

The generalized, second kind of superposition of a state with
a different squeezing value and a differenct weight factor is

|ψ〉 =
(

l∑
p=1

l∑
j=1

apa∗
j√

cosh (qp − q j )

)− 1
2 l−1∑

j=0

a j |ξ j〉, (20)

FIG. 2. Variation of the entanglement measure (E2
m ) for a gener-

alized superposition state with |aj |. All the axes are dimensionless.

where ξ j = q jeiθ j , and a j’s are the weight factors. By using
the GEM, the entanglement measure is

E2
M = 2

[
1 −

∑ 1

|a j |2
]
. (21)

For superposition of the first kind, the entanglement measure
is found to be 0, and from Fig. 2, the entanglement measure for
the generalized second kind of superposition state increases
slowly and then saturates when the weight factor reaches
maximum.

D. Non-Gaussian CV Bell state

From Ref. [7], the non-Gaussian continuous variable state
is expressed as

ψng =
√

2

π
(px1 + qx2)e− (x2

1+x2
2 )

2 . (22)

The state is a composite system of bosonic particles formed
from the ground and excited states of the harmonic oscilla-
tors [23]. The experimental scheme of this state has already
been proposed [24]. The Peres-Horodecki criterion [25,26] is
only sufficient for Eq. (22). Agarwal and Biswas [7] show
inseparability of the state (22) via inequalities which are also
applicable for the state (22).

By using the GEM, across the m|(n − m) bipartitions, one
finds

NmN∗
m|m, n〉〈m, n| + NnN∗

n |n, m〉〈n, m|
+ N∗

mNn|m, m〉〈n, n| + NmN∗
n |n, n〉〈m, m|.

For m 
= n, the measure of entanglement is given by

E2
M = 2

[
1 − 2

π
p2q2

]
. (23)

Clearly, we can see that the state is entangled and E2
M = 0 iff

p or q is zero. The entanglement depends on the parameter p
or q.

IV. GEM FOR MIXED CV STATES

We can now define the GEM for a general mixed
continuous-variable systems. For N degree-of-freedom
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continuous-variable mixed states, the GEM is defined as

G(ρ) = min
{ai,|ψ i〉}

∑
i

aiE
2
M(|ψ i〉), (24)

where ρ is any mixed state which is a convex combination of
{ai, |ψ i〉} of pure states,

ρ =
∑

i

ai|ψ i〉〈|ψ i〉|.

To find the GEM of a mixed state, it is important to consider
the nonuniqueness of the of the pure state decomposition.
Here we consider convex hull construction [27], a general
extension method to define the GEM for mixed continuous-
variable states. We briefly discuss convex hull construction
since we need this for one of the main results. Consider P
to be a convex set and Q ⊂ P to be an arbitrary subset. Let
F : Q → R ∪ {+∞}. We then define the function coF : P →
R ∪ {+∞} by

coF(S) = inf

{∑
i

riF (xi )|xi → Q,
∑

i

rixi = S

}
, (25)

where infimum is over all convex combinations with
∑

i ri �
0,
∑

i ri = 1, and infimum over an empty set is +∞. Now
consider an example: the entropy [19] is E (a, b) = tra(lna −
lb). In this notation, the definition of general entanglement or
the relative entropy is

ERE(ρ) = CoE(ρ).

We provide a general method for a class of continuous-
variable mixed states via the above method which satisfies the
following condition: An arbitrary state ρ is invariant under
transformation such that ρ = ρ ′.

ρ remains invariant under the transformation X → ∧mX .
Proof. One can define

ρ̃ = |ψ〉〈ψ∗| =
∫

φ(N1X )φ(N2X )N1|X 〉〈X |NT
2 dX . (26)

The matrix element of ρ̃ could be written as

ρ̃ = �̃(X )N1|X 〉〈X |NT
2 .

Under the transpose, where the transposition is done on the
M̃ subsystem,

ρ̃→�̃(X )N1 ∧m |X 〉〈X | ∧T
m NT

2 = ρ̃(∧mX ),

ρ̃ ′ =
∫

φ(N1X )φ(N2X )N1 ∧m |X 〉〈X | ∧T
m NT

2 dX . (27)

Since the integration is on X , ρ̃ ′ does not change under the
substitution X → ∧mX :

ρ̃ ′ = φ(N1 ∧m X )φ(N2 ∧m X )N1|X 〉〈X |NT
2 dX .

Hence, ρ = ρ ′.
In principle, one can have a set of states for which ρ = ρ ′;

then it is sufficient to perform the optimization over the set. If
any mixed CV state satisfies the above, then this method can
be successfully implemented to find the GEM for the state.
Note that this method is directly connected to other methods
that we discuss in Sec. III.

Now we show that the GEM is a “good” measure of entan-
glement [19] which satisfies all the following three conditions.

The necessary conditions the measure of entanglement G(ρ)
has to satisfy are as follows.

(i) G(ρ) = 0 iff ψ is separable.
(ii) G(ρ) is invariant under local unitary operations.
(iii) The measure of entanglement cannot increase under

local general measurements + classical communication.
To satisfy condition (i), it is sufficient to demand that

G(ρ) = 0, iff �̃(X ) = �̃(∧mX ). Because of the invariance of
ρ under X → ∧mX , condition (ii) is automatically satisfied.

�̃(X )�̃∗(∧mX ) is nonincreasing under every completely
positive, trace-preserving map.

Proof. A complete measurement is given as a unitary op-
eration + partial tracing on extended Hilbert space. For any
completely positive, trace-preserving map σ , i.e., σ (X ) =∑

WiXW †
i and

∑
i W †

i Wi = 1, where W is an operator satisfy-
ing the completeness relation

∑
i W †

i Wi = 1, G is any measure
between two states λ and ω and is defined as G(λ||ω).

Vedral et al. [19] presented the following set of sufficient
conditions.

(T1) Unitary operations leave G(λ||ω) invariant, i.e.,
G(λ||ω) = G(UλU †||UωU †).

(T2) G(Trωλ||Trωω) � λ||ω, where Trρ is a partial trace.
(T3) G(λ ⊗ |α〉〈α|||ω ⊗ |α〉〈α|) = G(λ||ω).
Let us define V =∑i Wi ⊗ |i〉〈η|, where |i〉 is an orthonor-

mal basis and η is a unit vector, and

V †V = 1 ⊗ |η〉〈η|.
There is a unitary operator U such that

U (X ⊗ |η〉〈η|)U † =
∑

i j

WiXW †
i ⊗ |i〉〈 j|,

Tr{U (X ⊗ |η〉〈η|)U †} =
∑

i

WiXW †
i . (28)

Using condition (T2),

φ[Tr2{U (X ⊗ |η〉〈η|)U †}]φ∗[Tr2{U (λmX ⊗ |η〉〈η|U †}]
� φ[U (X ⊗ |η〉〈η|)U †]φ∗[U (λmX ⊗ |η〉〈η|)U †].

Using (T3),

φ(X ⊗ |η〉〈η|)φ∗(λmX ⊗ |η〉〈η|) = φ(X )φ∗(λmX ).

This proves the above condition.
Our measure has a statistical operational basis that might

enable experimental determination of the quantitative degree
of entanglement. Now the GEM for multiparty CV states is
straightforward. We examine the GEM for a experimentally
realized state in the following section.

Phase-matched squeezed state

The phase-randomized two-mode squeezed vacuum state
[28] is given by

ρ2 =
∑

(1 − r)rn|n〉〈n| ⊗ |n〉〈n|, (29)

where r = tanh ξ (ξ is a complex squeezing parameter). One
can observe that Eq. (29) has no entanglement because it is
a convex mixture of tensor product states |n〉〈n| ⊗ |n〉〈n| and
the convex mixture is considered as a classical mixture of
product states. In Eq. (29), the phase is equally distributed,
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FIG. 3. Variation of the entanglement measure G(ρ ) for a phase-
matched squeezed state and a squeezed vacuum state with |ξ |. All
the axes are dimensionless.

called the fully phase-randomized state. Consider the phase is
not equally distributed, the phase-matched squeezed state is
given by

ρ ′
2 =

∑
m,n

p(m, n)(1 − r)r
m+n

2 |m, m〉〈n, n|, (30)

where p(m, n) = exp[−σ 2(m−n)2

2 ], r = ξ 2, and σ is the vari-
ance. ρ ′

2 is experimentally accessible and the entanglement
test can be performed experimentally. The GEM is given as

G(ρ) = 2

[
1 −

∑
m

(1 − ξ 2)2ξ 4m

]
. (31)

We show the variation of the GEM G(ρ) with |ξ | in Fig. 3.
In the case of the phase-matched squeezed state, when |ξ | =
0, G(ρ) starts increasing. Then, when |ξ | increases slowly,
it increases, and when |ξ | tends to 1, it saturates. For bet-
ter understanding of the entanglement of the phase-matched
squeezed state, we have compared the GEMs of this state and
of the squeezed vacuum states ψ =

√
1 − |ξ |2∑ ξ r |r, r〉 in

Fig. 3. Clearly, G(ρ) grows much faster, and varies linearly
with |ξ |, than that of the phase-matched squeezed state, and at
|ξ | = 1, the squeezed vacuum states attains maximum value.
The entanglement measure G(ρ) of the squeezed vacuum state
is larger than that of the phase-matched squeezed state.

V. DISCUSSION AND CONCLUSION

One may note the dynamics in the phase space by con-
sidering the Wigner transform on both the sides of �̃(X ) =
�̃(∧mX ), where X2n×1 ≡ [�x1

�x2
] with �x1 and �x2 being some

general coordinates of the system. Noting that �x1 and �x2 are
independent, the Wigner transform of the left-hand side is

W̃ (X ,P ) =
(

1

π

)2n ∫
e2iP ·Y�̃(X − Y )�̃∗(X + Y )dY

= W (�x1, �p1)W (�x2, �p2),
(32)

where Y ≡ [�y1

�y2
], P ≡ [ �p1

�p2
], and W is the corresponding Wigner

function of the given state |ψ〉. Under separability, W̃ (X ,P )

may equivalently be written as

=
(

1

π

)2n ∫
e2iP ·Y�̃[∧m(X − Y )]�̃∗[∧m(X + Y )]dY,

and since the integration runs on Y , transforming Y → ∧mY
does not change the integral. Therefore, under separability,

W̃ (X ,P ) =
(

1

π

)2n ∫
e2iP ·∧mY�̃(∧mX − Y )

× �̃∗(∧mX + Y )dY
= W̃ (∧mX ,∧mP ),

noting that P · ∧mY = ∧mP · Y , dY = d (∧mY ), and ∧2
m =

1. Therefore, W̃ (ξ ) being invariant under the coordinate
transformation ξ → (∧m 0

0 ∧m
)ξ , where ξ4n×1 = [XP], is a

necessary and sufficient condition for separability. Consid-
ering Tr(ρ4

PT) = Tr[(ρM)2 ⊗ (ρM̃)2] = (Tr[(ρM)2])2, one
may rewrite entanglement measure as

E2
M = 2

[
1 −

√
Tr
(
ρ4

PT

) ]

= 2

[
1 −

√∫
W 4

PT(�x, �p)d�xd �p
]
. (33)

For the case of 2 degrees of freedom, therefore, if∫
W 4

PT(x1, p1, x2, p2)d�xd �p = 1 for a given pure state, one may
write WPT(x1, p1, x2, p2) = W (x1, p1, x2,−p2) as shown by
Simon [6] under separability. Observing that Tr(ρPT) = 1 and
Tr(ρ2

PT) = 1 for any given pure density matrix ρ, one may
note that, when ρPT is positive semidefinite, the eigenvalues
must be either 0 or 1 with a multiplicity of 1 in the DV case. So
any higher powers of ρPT would also have unit trace. Hence,
ρ is separable iff ρPT is positive-semidefinite.

We conclude by commenting on the connections to other
widely used measures in the literature to show their equiva-
lence to the GEM. The Hilbert-Schmidt distance D between
two density matrices, ρ1 and ρ2, is D2

ρ1
(ρ2) ≡ ||ρ1 − ρ2||2HS =

Tr[(ρ1 − ρ2)2] has been widely used to study the geometry
and structure of entanglement with connections to negativity
and positive partially transposed states [17,29]. Now using
Eqs. (3) and (4), we get

ρ̃ − ˜ρPT =
∫

[φ(N1X )φ(N2X ) − φ(N1 ∧m X )

×φ(N2 ∧m X )]N1|X 〉〈X |N T
2 dX . (34)

It is evident that the GEM can be instead interpreted as

E2
M = ||ρ̃1 − ρ̃2||2HS. (35)

This is shown below to be related to the Hilbert-Schmidt
distance of the reduced density matrix from the maximally
mixed state using Lagrange’s identity. Consider the case of
the general DV system with the density matrix ρN×N . Taking
ρ1 = 1

N 1N×N , one may write the distance of ρ to the maxi-
mally mixed state ρ1 as

D2(ρ) = Tr

(
1

N2
1 + ρ2 − 2

N
ρ

)
= Tr(ρ2) − 1

N
,
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noting Tr(ρ) = 1 and Tr(1) = N . In the CV case as N → ∞,
D2(ρ) = Tr(ρ2) = 1 − E2(ρ)/2, where E is the generalized
entanglement measure. One may conversely use this property
to geometrically define define a maximally mixed CV states,
noting from Eq. (13) that one can have the following identity
for CV states,

||ρ̃1 − ρ̃2||2HS + 2||ρM − ρ1||2HS = 2.

On the same note, one can show the equivalence of the
von Neumann entropy as an entanglement measure to the
GEM. The entropy of a density matrix ρ is defined as S =
−Tr(ρ ln ρ) = 〈ln ρ〉, where 〈·〉 denotes the expectation value.
Expanding S around a pure state ρ2 = ρ, that is, the non-
negative matrix 1 − ρ, and noting that E2/2 = 1 − Tr(ρ2) =
Tr[ρ(1 − ρ)] = 〈1 − ρ〉, one infers

S = −〈ln ρ〉
= 〈1 − ρ〉 + 〈(1 − ρ)2/2〉 + 〈(1 − ρ)3/3〉 + · · · ,

and therefore, S = E2

2 + residual. Clearly, iff E = 0, the resid-
ual term vanishes, giving S = 0; otherwise when E > 0, the
residual remains positive, giving S > E2/2 for any state ρ.
Therefore, S and E are equivalent in characterizing separable
states and entanglement among entangled states faithfully. It
is, however, faster computationally to calculate the GEM than
it is to find the von Neumann entropy, as it does not require
diagonalization of the density matrix.

The convex roof construction involves optimization and
is usually hard. The entanglement of an arbitrary mixed
continuous-variable state is not a simple task. In this paper,
we defined entanglement for pure continuous-variable states
and extended the concept to mixed continuous-variable states
via the convex roof construction. We evaluated the measure
for several classes of continuous-variable states. However, it
is not clear whether the same method is useful for the mixture
of states which have white or colored noise. The persistence
of subplanck structure in mixed continuous-variable states is
made possible with specific environmental conditions [30].
We hope our work provides insights into the geometry and
structure of entanglement in general in both pure and mixed
continuous-variable systems by proving a family of faithful
entanglement measures and equivalent forms of necessary and
sufficient conditions for separability across arbitrary bipar-
titions. We believe the results hold deep connections to the

recent works on the nature of quantum correlations in many-
body systems [31], monogamy of entanglement [32,33], and
fundamental aspects of quantum mechanics, including the
uncertainty principle and commutation relations [6,8,10].
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APPENDIX: PROOF OF LAGRANGE’S IDENTITY

Considering the right-hand side of Eq. (11),

=
∫∫ �u

�t
| f (�x)g( �x′) − f ( �x′)g(�x)|2d �x′d�x

= 1

2

∫∫ �u

�t
| f (�x)g( �x′) − f ( �x′)g(�x)|2d �x′d�x

= 1

2

∫∫ �u

�t
[ f (�x)g( �x′) − f ( �x′)g(�x)]

[ f ∗(�x)g∗( �x′) − f ∗( �x′)g∗(�x)]d �x′d�x

= 1

2

∫∫ �u

�t
[| f (�x)|2|g( �x′)|2 − 2Re[ f (�x)g( �x′) f ∗( �x′)g∗(�x)]

+ | f ( �x′)|2|g(�x)|2]d �x′d�x

=
(∫ �u

�t
| f (�x)|2d�x

)(∫ �u

�t
|g( �x′)|2d�x

)

− Re
∫∫ �u

�t
f (�x)g( �x′) f ∗( �x′)g∗(�x)d �x′d�x

=
(∫ �u

�t
| f (�x)|2d�x

)(∫ �u

�t
|g( �x′)|2d�x

)
−
∣∣∣∣∣
∫ �u

�t
f (�x)g∗(�x)d�x

∣∣∣∣∣
2

= Left-hand side,

hence the identity.
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