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Abstract Concurrence, introduced by Hill and Wootters (Phys Rev Lett 78:5022,
1997), provides an important measure of entanglement for a general pair of qubits that
is faithful: strictly positive for entangled states and vanishing for all separable states.
Such a measure captures the entire content of entanglement, providing necessary and
sufficient conditions for separability. We present an extension of concurrence to mul-
tiparticle pure states in arbitrary dimensions by a new framework using the Lagrange’s
identity and wedge product representation of separability conditions, which coincides
with the “I-concurrence” of Rungta et al. (Phys Rev A 64:042315, 2001) who proposed
by extending Wootters’s spin-flip operator to a so-called universal inverter superoper-
ator. Our framework exposes an inherent geometry of entanglement and may be useful
for the further extensions to mixed and continuous variable states.

Keywords Quantum entanglement · Separability · Multiparticle pure states ·
Lagrange’s identity · Wedge product

1 Introduction

A deeper understanding of inseparability or entanglement is of fundamental impor-
tance for the understanding of intrinsic quantum correlations. It has far-reaching
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applications in quantum computation and information theory [1]. Entanglement forms
an elementary resource in quantum computation and various quantum communication
protocols [2,3]. Detecting and quantifying this resource is of great practical applica-
tion.

Quantifying entanglement faithfully in a multiparticle scenario is central to quan-
tum information theory so that one can estimate how close quantum states are to
classical ones, and characterize the efficiency of protocols deterministically, which
use entanglement as a resource [4–6]. Recent interest on the connections between
quantum entanglement and the emergence of space–time [7,8] also calls for a sys-
tematic study of the geometry–entanglement relationship with the quantification of
entanglement playing a subtler role in the context of quantum gravity.

For the two-qubit case, an important measure of entanglement is the concurrence
[9], which is strictly positive for entangled states and vanishing for separable states.
It provides the necessary and sufficient conditions of separability for a general pair of
qubits. An extension of concurrence for multiparticle pure states is the “I-concurrence”
introduced by Rungta et al. [10]. They generalized the spin-flip superoperator to act
on quantum systems of arbitrary dimensions and introduced the corresponding gen-
eralized concurrence for joint pure states of bipartite quantum systems.

In this paper, we present a similar generalization of concurrence to multiparticle
pure states of arbitrary dimensions that is faithful by a new framework using the
Lagrange’s identity and wedge product representation, leading to a measure of entan-
glement identical to the I-concurrence. This framework reveals an essential geometry
of entanglement and may be useful for further extension of concurrence to other com-
plex systems of interest.

There have been works on a similar spirit, of which some include the study by
Sawicki et al. [11] on the symplectic geometry of entanglement, Nielsen [12] on the
connection between the algebra of majorization and entanglement transformations,
Zhu [13] on the structure of quantum correlations of many-body systems, Duan et
al. [14] and Simon [15] on the entanglement in continuous variable systems.

2 Separability for pure multiparticle states and the central result

For future convenience, we define separability for pure multiparticle states. Consider
a n-particle pure quantum system. Let P|Q be a bipartition of this composite(whole)
system P ∪ Q, with respective Hilbert spaces HP and HQ for the states of the sub-
systems P and Q; then, the state space of the composite system is given by the tensor
product H = HP ⊗ HQ . If a pure state |ψ〉 ∈ H of the composite system can be
written in the form

|ψ〉 = |φ〉P ⊗ |χ〉Q,

where |φ〉P ∈ HP and |χ〉Q ∈ HQ are the pure states of the sub-systems P and Q,
respectively, then the system is said to be separable across the bipartition P|Q. Alter-
natively, the sub-system P is separable from the composite system P ∪ Q. Otherwise,
the sub-systems P and Q are said to be entangled.
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To state the central result of the paper, consider a n-particle system with particles
labeled by (k), k = 1, 2, . . . , n. Suppose |ψ〉 is any pure state of the system and
ρ = |ψ〉〈ψ | be its density matrix. Let M be the set of the particular particles whose
bipartite separability from the composite system is of interest with cardinality m (<

n). Then the generalized concurrence, EM , for the bipartition M | M is given, in
equivalent forms, as (M being the complementary set of M ):

E2
M = 4

∑

i< j

(
ρM
i i ρM

j j − ρM
i j ρM

j i

)
= 4

∑

i< j

λiλ j

= 2

[
1 − tr

[
(ρM )2]

]
,

where ρM def= ∑
j 〈 j |M (|ψ〉〈ψ |) | j〉M = TrM (ρ) is the reduced density matrix

on the sub-system M obtained by tracing out the sub-system M , and λi are the
eigenvalues of ρM .

EM vanishes iff the system is separable across the bipartition M | M and takes
the maximum value iff ρM is maximally mixed. A measure of global entanglement
would then be the sum of measures for distinct bipartitions of the system. Evidently,
a composite system is separable across all bipartitions if and only if every single-
particle bipartition is separable. Therefore, the necessary and sufficient criterion for
separability across all bipartitions is

∑n
k=1 E

2
(k) = 0, where ρ(k) is the single-particle

reduced density matrix of ρ on particle (k).
One can arrive at the result by considering the simple case of a two-qubit system

and subsequently generalizing the framework to multiparticle systems in arbitrary
dimensions.

3 Two-qubit concurrence using Lagrange’s identity and wedge product
framework

Consider a two-qubit system with qubits A and B. Let |ψ〉 be a normalized pure state
of the system with

|ψ〉 = p|0A0B〉 + q|0A1B〉 + r |1A0B〉 + s|1A1B〉

(p, q, r, s ∈ C). Rewriting the state as:

|ψ〉 = |0A〉 (p|0B〉 + q|1B〉) + |1A〉 (r |0B〉 + s|1B〉)
= |0A〉 〈0A|ψ〉 + |1A〉 〈1A|ψ〉, (1)

the bipartition A|B is separable if and only if the vectors 〈0A|ψ〉 = p|0B〉 + q|1B〉
and 〈1A|ψ〉 = r |0B〉 + s|1B〉 (or equivalently 〈0B |ψ〉 and 〈1B |ψ〉) are parallel, i.e., if
and only if

p

r
= q

s
⇒ ps − qr = 0. (2)
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Then the modulus of ps − qr is a faithful measure of entanglement for two qubits,
which vanishes only for separable states. This condition may be elegantly written using
the notation of a wedge product, which generalizes easily to multiparticle systems in
arbitrary dimensions, as we show subsequently.

In geometric algebra [16], the wedge product of two vectors is seen as a partic-
ular generalization of cross product to higher dimensions and is defined as follows.
Consider any two vectors −→a and

−→
b in C

m written in the orthonormal basis {êi }mi=1.
Their wedge product is a bivector in the mC2-dimensional exterior space with basis
{êi }mi=1 ∧ {ê j }mj=1 defined, by stipulating that êi ∧ ê j = −ê j ∧ êi and êi ∧ êi = 0, as:

−→a ∧ −→
b =

m−1∑

i=1

m∑

j=i+1

(
aib j − a jbi

)
êi ∧ ê j , (3)

with −→a ∧ −→a = 0 and −→a ∧ −→
b = (−1)

−→
b ∧ −→a . In the coordinate notation −→a ∧ −→

b
may be written as:

(a1b2 − a2b1, a1b3 − a3b1, . . . ,a1bm − amb1, a2b3 − a3b2, . . . ,

a2bm − amb2, . . . , am−1bm − ambm−1).

This representation allows one to write the separability conditions in a compact and
useful form. We note ||〈0A|ψ〉∧〈1A|ψ〉|| = ||〈0B |ψ〉∧〈1B |ψ〉|| = |ps−qr |, which is
the measure of entanglement for the case of a two-qubit pure state. ||〈0A|ψ〉∧〈1A|ψ〉||
geometrically represents the area of the complex parallelotope formed by the vectors
〈0A|ψ〉 and 〈1A|ψ〉 in the Hilbert space of qubit B. We write the two-qubit measure of
entanglement as E = 2||〈0A|ψ〉 ∧ 〈1A|ψ〉|| = 2||〈0B |ψ〉 ∧ 〈1B |ψ〉|| = 2|ps − qr |,
which is the concurrence [9] for two-qubit pure states defined by Hill and Wootters as

C(ψ) = |〈ψ |ψ̃〉| = 2|ps − qr |, where |ψ̃〉 = σy |ψ∗〉, σy =
(

0 −i
i 0

)
and |ψ∗〉 is the

complex conjugate of |ψ〉.
For maximal entanglement by this measure, the area of the parallelotope, |ps−qr |,

must be maximum, which implies that the parallelotope must be a square with its
sides taking the maximum possible value. As the sum of the squares of the sides
is constrained to be 1 (by normalization), i.e., |〈0A|ψ〉|2 + |〈1A|ψ〉|2 = 1, the area
is maximized when each of the side of the square equals 1√

2
. Then, E(max) = 1,

0 ≤ E ≤ 1. Therefore, for maximal entanglement,

|〈0A|ψ〉| = |〈1A|ψ〉| = 1√
2
, |〈0B |ψ〉| = |〈1B |ψ〉| = 1√

2
,

(〈0A|ψ〉)†〈1A|ψ〉 = 0, (〈0B |ψ〉)†〈1B |ψ〉 = 0.

These conditions for maximal entanglement are identical to the condition of the
reduced density matrix being maximally mixed.

Recall the generalized Lagrange’s identity [17] for vectors in C
m , which is a

generalization of the Brahmagupta–Fibonacci identity [18] and a special form of
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the Binet–Cauchy identity [19,20]. Consider two vectors −→a ,
−→
b ∈ C

m . Then the
Lagrange’s identity takes the form: ‖−→a ‖2‖−→b ‖2 − |−→a · −→

b |2 = ‖−→a ∧ −→
b ‖2 (‖ · ‖

representing the norm of a vector and | · | the modulus of a scalar), i.e.,

(
m∑

k=1

|ak |2
)(

m∑

k=1

|bk |2
)

−
∣∣∣∣∣

m∑

k=1

akbk

∣∣∣∣∣

2

=
m−1∑

i=1

m∑

j=i+1

|aib j − a jbi |2 (4)

where bk represents the complex conjugate of bk (see “Appendix” for proof). The
norm of the wedge product −→a ∧ −→

b calculated by RHS of Eq. (4) takes O(m2)

steps, while calculating the same using the LHS takes only O(m) steps. Therefore,
this identity when applied to the wedge product representation of the separability
conditions results in a computationally lesser intensive expression, asymptotically
with increasing number of particles and dimensions, in terms of the traces of the
squared reduced density matrices of the pure state.

By this identity, one may write E2
A = 4||〈0A|ψ〉∧〈1A|ψ〉||2 = 4||(p, q)∧ (r, s)||2

as

[
4(|p|2 + |q|2)(|r |2 + |s|2) − 4|pr + qs|2

]
. By noting this to be the determinant

of the reduced density matrix on qubit A (ρA), by definition, as ρ in this case is

ρ =

⎛

⎜⎜⎝

|p|2 pq pr ps
q p |q|2 qr qs
r p rq |r |2 rs
s p sq sr |s|2

⎞

⎟⎟⎠ ,

and therefore the reduced density matrix on A, ρA, takes the form:

ρA = 〈0B |ρ|0B〉 + 〈1B |ρ|1B〉
=

( |p|2 + |q|2 pr + qs
r p + sq |r |2 + |s|2

)
,

one may, thus, rewrite the two-qubit measure of entanglement as E = 2
√
det (ρA) =

2
√
det (ρB). This may further be written as

E2
A = 4 det (ρA) = 4

∑

i< j

(
ρA
ii ρ

A
j j − ρA

i jρ
A
ji

)

= 4

⎡

⎣1

2

∑

i, j

(
ρA
ii ρ

A
j j − ρA

i jρ
A
ji

)
⎤

⎦
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= 4

[
1

2

(
[tr(ρA)]2 − tr[(ρA)2]

)]
(5)

= 2

[
1 − tr[(ρA)2]

]
, (6)

since the trace of a valid density matrix is unity and for any square matrix M ,∑
i, j Mi j M ji = tr(M2), and

∑
i, j Mii M j j = ∑

i Mii
∑

j M j j = tr(M)2.
The characteristic polynomial of a m × m matrix M in t is given by:

tm − (tr M)tm−1 + 1

2

(
tr(M)2 − tr(M2)

)
tm−2 + · · · + (−1)m (det M).

So Eq. (5) is the tm−2 coefficient (except for a constant) of the characteristic poly-
nomial of the m × m reduced density matrix ρA. This can be thought of as the first
step, interpolating between the trace of ρA (which is the tm−1 coefficient) and the
determinant of ρA (which is the constant coefficient). The roots of the characteristic
polynomial are precisely the eigenvalues of ρA. If the eigenvalues of ρA are λ1, . . . , λm
then [21]

E2
A = 4

[
1

2

(
1 −

∑

i

λ2
i

)]
= 4

∑

i< j

λiλ j . (7)

This mathematical setting extends in a straightforward way to more general cases
in higher dimensions, and a global faithful measure of entanglement may be written
down by summing over the contribution of each of the independent bipartitions of the
general pure state as we show subsequently.

4 Extension to multiparticle states in arbitrary dimensions

Consider a n-particle pure state |ψ〉 in arbitrary dimensions with the particles labeled
by {1, 2, . . . , n} in an orthonormal basis as

|ψ〉 =
d1−1, d2−1, ..., dn−1∑

j1, j2, ..., jn=0

a j1 j2... jn | j1〉 ⊗ | j2〉 ⊗ · · · ⊗ | jn〉, (8)

where particle i has access to a di -dimensional Hilbert space, and a j1 j2... jn are the
complex amplitudes. That is, particle i , when isolated, may be described by di discrete
orthonormal basis set {|0〉, |1〉, . . . , |di−1〉}. Therefore, |ψ〉 exists in a D-dimensional
Hilbert space where D = ∏n

i=1 di . For convenience, one might omit the upper limits
of the summation in Eq. (8) by noting that each summation index ji appropriately
goes from 0 to di − 1.

Consider the bipartite separability of a particular set M of m-particles (m < n) out
of the n-particle system. Without any loss of generality, let the m-particles be labeled
by {1, 2, . . . ,m}, so that the particles labeled by {m + 1,m + 2, . . . , n} represent the
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rest of (n − m)-particles belonging to the complement set M . One may rewrite the
state |ψ〉 as

|ψ〉 =
∑

j1, j2, ..., jn

a j1 j2... jn (| j1〉⊗| j2〉⊗· · ·⊗| jm〉)⊗(| jm+1〉 ⊗ | jm+2〉⊗· · ·⊗| jn〉)

=
∑

j1, j2, ..., jm

∑

jm+1, ..., jn

a j1 j2... jm jm+1... jn | j1 j2 . . . jm〉 ⊗ | jm+1 . . . jn〉

=
∑

j1, j2, ..., jm

⎡

⎣| j1 j2 . . . jm〉 ⊗
⎛

⎝
∑

jm+1, ..., jn

a j1 j2... jm jm+1... jn | jm+1 . . . jn〉
⎞

⎠

⎤

⎦ .

(9)

By noting that

〈k1k2 . . . km |ψ〉 =
∑

jm+1,..., jn

ak1k2...km jm+1... jn | jm+1 . . . jn〉, (10)

Eq. (9) may be expressed as

|ψ〉 =
∑

j1, ..., jm

| j1 j2 . . . jm〉 ⊗
[
〈 j1 j2 . . . jm |ψ〉

]
. (11)

Therefore, for the separability of |ψ〉 across M |M bipartition, one needs the set of
vectors {〈 j1 j2 . . . jm |ψ〉} j1,..., jm in C

Dn−m (where Dn−m = ∏n
i=m+1 di ) to be parallel

for the m-particle state to factor out of |ψ〉. Therefore, the mutual wedge products
among {〈 j1 j2 . . . jm |ψ〉} j1,..., jm must vanish for the required bipartite separability. This
is a necessary and sufficient condition of separability across M |M as noted before.
Hence, one may construct a faithful measure of entanglement across the bipartition
as

E2
M = 4

∑

i1,...,im

∑

j1≥i1,..., jm≥im|i1− j1|+···+|im− jm |�=0

||〈i1i2 . . . im |ψ〉 ∧ 〈 j1 j2 . . . jm |ψ〉||2, (12)

where the norm is computed in the orthogonal basis {|km+1 . . . kn〉 ∧ |lm+1 . . . ln〉},
and |i1 − j1|+· · ·+|im − jm | �= 0 ensures that not all i p are equal to jp simultaneously
∀ p in which case the wedge product trivially vanishes. There are DmC2 terms in the
above summation where Dm = ∏m

i=1 di . Noting that |km+1 . . . kn〉 ∧ |lm+1 . . . ln〉 =
−|lm+1 . . . ln〉 ∧ |km+1 . . . kn〉 by definition, consider
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〈i1i2 . . . im |ψ〉 ∧ 〈 j1 j2 . . . jm |ψ〉

=
⎛

⎝
∑

km+1,...,kn

ai1i2...imkm+1...kn |km+1 . . . kn〉
⎞

⎠

∧
⎛

⎝
∑

lm+1,...,ln

a j1 j2... jmlm+1...ln |lm+1 . . . ln〉
⎞

⎠

=
∑

km+1,...,kn

∑

lm+1,...,ln

ai1i2...imkm+1...kn a j1 j2... jmlm+1...ln |km+1 . . . kn〉 ∧ |lm+1 . . . ln〉

=
∑

km+1,...,kn

∑

lm+1≥km+1,...,ln≥kn|im+1−km+1|+···+|ln−kn |�=0
(
ai1i2...imkm+1...kn a j1 j2... jmlm+1...ln − ai1i2...imlm+1...ln a j1 j2... jmkm+1...kn

)

|km+1 . . . kn〉 ∧ |lm+1 . . . ln〉.

Therefore,

||〈i1i2 . . . im |ψ〉 ∧ 〈 j1 j2 . . . jm |ψ〉||2
=

∑

km+1,...,kn

∑

lm+1≥km+1,...,ln≥kn|im+1−km+1|+···+|ln−kn |�=0
∣∣ai1i2...imkm+1...kn a j1 j2... jmlm+1...ln − ai1i2...imlm+1...ln a j1 j2... jmkm+1...kn

∣∣2 .

By the generalized Lagrange’s identity Eq. (4), one may write the above expression
equivalently as

=
⎛

⎝
∑

km+1,...,kn

∣∣ai1i2...imkm+1...kn

∣∣2
⎞

⎠

⎛

⎝
∑

lm+1,...,ln

∣∣a j1 j2... jmlm+1...ln

∣∣2
⎞

⎠

−
∣∣∣∣∣∣

∑

km+1,...,kn

(
ai1i2...imkm+1...kn a j1 j2... jmkm+1...kn

)
∣∣∣∣∣∣

2

.

Hence, the entanglement measure may be explicitly written in terms of the amplitudes
of the wavefunction in equivalent forms as

E2
M = 4

∑

i1,...,im

∑

j1≥i1,..., jm≥im|i1− j1|+···+|im− jm |�=0

∑

km+1,...,kn

∑

lm+1≥km+1,...,ln≥kn|im+1−km+1|+···+|ln−kn |�=0
∣∣ai1i2...imkm+1...kn a j1 j2... jmlm+1...ln − ai1i2...imlm+1...ln a j1 j2... jmkm+1...kn

∣∣2
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= 4
∑

i1,...,im

∑

j1≥i1,..., jm≥im|i1− j1|+···+|im− jm |�=0

⎡

⎣

⎛

⎝
∑

km+1,...,kn

∣∣ai1i2...imkm+1...kn

∣∣2
⎞

⎠

⎛

⎝
∑

lm+1,...,ln

∣∣a j1 j2... jmlm+1...ln

∣∣2
⎞

⎠

−
∣∣∣∣∣∣

∑

km+1,...,kn

ai1i2...imkm+1...kn a j1 j2... jmkm+1...kn

∣∣∣∣∣∣

2
⎤

⎥⎦ . (13)

The measure EM is constructed (with appropriate constants) so that it coincides with
Wootters’s concurrence for the case of a two-qubit system.

Considering the pure state density matrix of the system as

ρ = |ψ〉〈ψ |

=
⎛

⎝
∑

j1, j2,..., jn

a j1 j2... jn | j1 j2 . . . jn〉
⎞

⎠

⎛

⎝
∑

i1,i2,...,in

ai1i2...in 〈i1i2 . . . in|
⎞

⎠

=
∑

j1, j2,..., jn

∑

i1,i2,...,in

a j1 j2... jn ai1i2...in | j1 j2 . . . jn〉〈i1i2 . . . in|, (14)

one may define the reduced density matrix ρM of M by tracing out M as

ρM def= TrM (ρ) =
∑

km+1,...,kn

〈km+1 . . . kn|ρ|km+1 . . . kn〉

=
∑

km+1,...,kn

∑

j1,..., jn

∑

i1,...,in

a j1... jm jm+1... jn ai1...imim+1...in

〈km+1 . . . kn| j1 . . . jm jm+1 . . . jn〉
〈i1 . . . imim+1 . . . in|km+1 . . . kn〉

=
∑

j1,..., jn

∑

i1,...,in

⎡

⎣
∑

km+1,...,kn

a j1... jmkm+1...kn ai1...imkm+1...kn

⎤

⎦

︸ ︷︷ ︸
matrix element of the reduced density matrix

| j1 . . . jm〉〈i1 . . . im |

=
∑

j1,..., jn

∑

i1,...,in

ρM
j i | j1 . . . jm〉〈i1 . . . im |, (15)

where j and i are the indices of the reduced density matrix. The matrix element at
the index j i is given by ρM

j i = 〈 j1 . . . jm |ρM |i1 . . . im〉. Therefore, one arrives at the
result considering
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2

[
1 − Tr

[(
ρM

)2
]]

= 4
∑

i< j

(
ρM
i i ρM

j j − ρM
i j ρM

j i

)
[by Eq. (6)],

= 4
∑

i1,...,im

∑

j1≥i1,..., jm≥im|i1− j1|+···+|im− jm |�=0
(
〈i1 . . . im |ρM |i1 . . . im〉〈 j1 . . . jm |ρM | j1 . . . jm〉

−〈i1 . . . im |ρM | j1 . . . jm〉〈 j1 . . . jm |ρM |i1 . . . im〉
)

= E2
M [from Eq. (13) and Eq. (15)].

Since 1/Dm ≤ Tr

[(
ρM

)2
]

≤ 1 (where the minimum is achieved when ρM is

maximally mixed), 0 ≤ E2
M ≤ 2 − 2/Dm . Maximal entanglement across M |M is

attained with EM = √
2 − 2/Dm iff ρM is maximally mixed, by this measure. We

analyze the above construction for the cases of a three-qubit, four-qubit and two-qutrit
system to assess the generalization.

Three-qubit states Consider the three-qubit case. Let a normalized pure state of the
three-qubit system be |ψ〉 with density matrix ρ = |ψ〉〈ψ | and with qubits labeled by
A, B and C . Let

|ψ〉 = p|0A0B0C 〉 + q|0A0B1C 〉 + r |0A1B0C 〉 + s|0A1B1C 〉
+ t |1A0B0C 〉 + u|1A0B1C 〉 + v|1A1B0C 〉 + w|1A1B1C 〉

= |0A〉 [p|0B0C 〉 + q|0B1C 〉 + r |1B0C 〉 + s|1B1C 〉]

+ |1A〉 [t |0B0C 〉 + u|0B1C 〉 + v|1B0C 〉 + w|1B1C 〉]
= |0A〉 〈0A|ψ〉 + |1A〉 〈1A|ψ〉

(p, q, r, s, t, u, v, w ∈ C). Similar to the two-qubit case, for separability of qubit A
(i.e., the bipartition A|BC) here, the vectors 〈0A|ψ〉, 〈1A|ψ〉 must be parallel. This
yields the condition for separability of qubit A to be:

p

t
= q

u
= r

v
= s

w
. (16)

The separability condition may be written in the wedge product representation as
〈0A|ψ〉 ∧ 〈1A|ψ〉 = 0, which is equivalent to the relations in Eq. (16) on cross-
multiplying, since:

(p, q, r, s) ∧ (t, u, v, w)

= (pu − qt, pv − r t, pw − st, qv − ru, qw − su, rw − sv),
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by the coordinate notation of the wedge product defined previously. Therefore, the
bipartite separability A|BC ⇔〈0A|ψ〉∧〈1A|ψ〉 = 0. Hence, its norm is a deterministic
measure of entanglement of qubit A with system BC . By the Lagrange’s identity,
‖〈0A|ψ〉 ∧ 〈1A|ψ〉‖2 turns out to be equal to the determinant of qubit A’s reduced
density matrix ρA by definition, similar to the previous case. Therefore, one can write
the global measure of entanglement for a three-qubit system, considering independent
bipartitions, as:

E = EA + EB + EC

= 2||〈0A|ψ〉 ∧ 〈1A|ψ〉|| + 2||〈0B |ψ〉 ∧ 〈1B |ψ〉||+
2||〈0C |ψ〉 ∧ 〈1C |ψ〉||
= 2

[√
det (ρA) +

√
det (ρB) +

√
det (ρC )

]
.

This can be rewritten in terms of eigenvalues of the reduced density matrices by the
derivation in Eq. (7). The maximum norm of each of the wedge products above is
= 1

2 . Therefore, 0 ≤ E ≤ 3. The |GHZ〉3 state is maximally entangled three-qubit
state with E = 3, by this measure, and for the |W 〉3 state, E = 2

√
2 � 2.828, which

suggests that it is highly entangled but lesser than |GHZ〉3 state, where: |GHZ〉3 =
1√
2

(|0A0B0C 〉 + |1A1B1C 〉) and |W 〉3 = 1√
3

(|1A0B0C 〉 + |0A1B0C 〉 + |0A0B1C 〉) .

Analogously, for a n-qubit system with pure state |ψ〉 and density operator ρ,
separability of qubit labeled by “i” (≤ n) ⇔ 〈0i |ψ〉 ∧ 〈1i |ψ〉 = 0. By Lagrange’s
identity this simplifies to: det (ρi ) = 0. Therefore, a particular qubit is separable from
a n-qubit system if and only if its corresponding single-qubit reduced density matrix is
singular. For the separability of the system across every bipartition, each single-qubit
reduced density matrix being singular is necessary and sufficient.

Four-qubit states Consider a four-qubit system with qubits labeled by A, B, C and D.
Let |ψ〉be its pure state with density matrixρ = |ψ〉〈ψ |. EA = 2‖〈0A|ψ〉∧〈1A|ψ〉‖ =
2
√
det (ρA) determines the separability of qubit A or qubit system (BCD) from

the composite system (ABCD), similar to the previous cases. Analogous to the
previous construction, for the separability of qubits (AB) or (CD) from the sys-
tem, the vectors 〈0A0B |ψ〉, 〈0A1B |ψ〉, 〈1A0B |ψ〉, 〈1A1B |ψ〉 in the Hilbert space
HCD of qubit system (CD) must be parallel. This can be seen by writing |ψ〉 as
[|0A0B〉 〈0A0B |ψ〉 + |0A1B〉 〈0A1B |ψ〉 + |1A0B〉 〈1A0B |ψ〉 + |1A1B〉 〈1A1B |ψ〉].
Therefore, a non-vanishing wedge product of one of the vectors with any other among
〈0A0B |ψ〉, 〈0A1B |ψ〉, 〈1A0B |ψ〉 and 〈1A1B |ψ〉 indicates entanglement of the sub-
systems (AB) and (CD). Therefore, define EAB as:

E2
AB = 4

[ ||〈0A0B |ψ〉 ∧ 〈0A1B |ψ〉||2 + ||〈0A0B |ψ〉 ∧ 〈1A0B |ψ〉||2
+ ||〈0A0B |ψ〉 ∧ 〈1A1B |ψ〉||2
+ ||〈0A1B |ψ〉 ∧ 〈1A0B |ψ〉||2 + ||〈0A1B |ψ〉 ∧ 〈1A1B |ψ〉||2
+ ||〈1A0B |ψ〉 ∧ 〈1A1B |ψ〉||2 ]

. (17)
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Therefore, separability of bipartition AB|CD ⇔ EAB = 0. Again by the Lagrange’s
identity, the expression Eq. (17) for E2

AB simplifies to the similar form as:

E2
AB = 4

22∑

i, j=1,i< j

(
ρAB
ii ρAB

j j − ρAB
i j ρAB

ji

)

= 4
∑

i< j

λiλ j = 2

[
1 − tr[(ρAB)2]

]
,

where λi are the eigenvalues of ρAB . Note that the term
∑22

i, j=1,i< j

(
ρAB
ii ρAB

j j

−ρAB
i j ρAB

ji

)
above is not the determinant of ρAB . Therefore, the generalizing expres-

sion is in terms of the traces of the squared reduced density matrices but not in terms
of their determinants for general cases. Similar expressions follow for E2

AC and E2
AD .

Considering independent bipartitions, one can write the global measure of entangle-
ment for the four-qubit system as:

E = EA + EB + EC + ED + EAB + EAC + EAD.

Evidently, E takes the maximum value only when the reduced density matrices are

maximally mixed. Therefore, E(max) = 4 + 3
√

6
2 � 7.674 for maximal entanglement,

by this measure. But this may not be attained for the case of a four-qubit system, as

shown by Higuchi et al. [22]. Therefore, 0 ≤ E < 4 + 3
√

6
2 .

For |GHZ〉4 = 1√
2

(|0A0B0C0D〉 + |1A1B1C1D〉) state, E = 7, and for the four-
qubit Higuchi–Sudbery state found numerically by Higuchi et al. [22]:

|HS〉 = 1√
6
[|0011〉 + |1100〉 + ω(|1010〉 + |0101〉) + ω2(|1001〉 + |0110〉)],

where ω = e2π i/3, E = 4 + 2
√

3 � 7.464, which is close to the unattainable bound
of � 7.674, showing that it is more entangled than the |GHZ〉4 state, by this measure.

Two-qutrit states Consider a two-qutrit system with levels |0〉, |1〉, |2〉 and qutrits
labeled by A and B. Let |ψ〉 be its pure state and ρ its density matrix. Similar to the
previous reasoning, for separability of qutrit A, the vectors 〈0A|ψ〉, 〈1A|ψ〉, 〈2A|ψ〉
must be parallel. This is clear once the state is written as: |ψ〉 = |0A〉 (〈0A|ψ〉) +
|1A〉 (〈1A|ψ〉) + |2A〉 (〈2A|ψ〉). Therefore, define the measure of entanglement of
qutrit A with qutrit B as:

E2
A = 4

[||〈0A|ψ〉 ∧ 〈1A|ψ〉||2 + ||〈0A|ψ〉 ∧ 〈2A|ψ〉||2 + ||〈1A|ψ〉 ∧ 〈2A|ψ〉||2].
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Applying the Lagrange’s identity gives (where λi are the eigenvalues of ρA):

E2
A = 4

3∑

i, j=1,i< j

(
ρA
ii ρA

j j − ρA
i j ρA

ji

)
= 4

∑

i< j

λiλ j = 2

[
1 − tr[(ρA)2]

]
.

One thus arrives at the result for pure multiparticle states in arbitrary dimensions
(which also includes systems of mixed dimensions such as qubit–qutrit) by noting the
generalizing structure from the various cases above. A global measure of entanglement
for the multiparticle system may be constructed by summing over the measures for
distinct bipartitions of the system.

5 Conclusion

We hope our work provides new insights into the deeply interesting phenomenon of
entanglement, exposing its essential geometry and mathematical structure, and is of
relevance to various related problems such as separability of mixed states and continu-
ous variable systems, classification of entanglement transformations and entanglement
characterization. This framework gives a faithful, computable measure of entangle-
ment for pure states and may further be useful in generalizing concurrence for mixed
and continuous variable states. The measure may also be used in numerical searches
for highly entangled multiparticle states [23–25], without missing any useful state, to
improve existing and discover new quantum information processing protocols [26,27].
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Appendix: Proof of Lagrange’s identity

Consider

RHS = ||−→a ∧ −→
b ||2

=
m−1∑

i=1

m∑

j=i+1

|aib j − a jbi |2

= 1

2

m∑

i=1

m∑

j=1

|aib j − a jbi |2

= 1

2

m∑

i=1

m∑

j=1

(aib j − a jbi )(aib j − a jbi )

= 1

2

m∑

i=1

m∑

j=1

(|ai |2|b j |2 − 2Re(aib ja j bi ) + |a j |2|bi |2)
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=
(

m∑

i=1

|ai |2
)⎛

⎝
m∑

j=1

|b j |2
⎞

⎠ − Re
m∑

i=1

m∑

j=1

(aib ja j bi )

=
(

m∑

i=1

|ai |2
)⎛

⎝
m∑

j=1

|b j |2
⎞

⎠ −
∣∣∣∣∣

m∑

i=1

aibi

∣∣∣∣∣

2

= ‖−→a ‖2‖−→b ‖2 − |−→a · −→
b |2 = LHS.

Hence the identity.
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