
GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks
Vin Bhaskara*1, Tristan A. A.*1,2,3,  Allan Jepson1, Alex Levinshtein1

Introduction

Ø Generative Adversarial 
Networks (GANs) can be quite 
effective in unsupervised 
image generation.

Ø Despite their effectiveness, 
GANs are hard to train (e.g., 
mode collapse, training 
divergence).

Previous works
Ø Gradient Penalties (GPs):
o Soft-constrain the norm of the input-gradient of discriminator/critic 
o Wasserstein-GANs enforce a Lipschitz Constant (LC) = 1. The P1

penalty imposes a two-sided constraint on the grad norm:

o Zero-centered gradient penalty:

Ø Spectral Normalization (SN):
o Per-layer 1-Lipschitz constraint on the discriminator/critic using an 

estimate of the largest singular value 𝜎(𝑊!) of weight matrix 𝑊!:

Ø Drawbacks:
o GPs do not guarantee exact enforcement and their domain must 

shift to catch-up to 𝐺 in training.
o SN enforces layer-wise 1-Lipschitzness but can cause gradient 

attenuation due to progressively shrinking (best) LC with depth.

Results on Unconditional Image Generation
Ø We evaluate image generation across multiple datasets (CIFAR-10, 

CIFAR-100, STL-10, Celeb-A, LSUN Bedrooms) and GAN losses. 
Check our paper for more detailed results. 

Ø Despite our method enforcing local 𝐾-Lipschitzness in theory, 
empirically the finite-difference grad norms are well-behaved even 
for large steps 𝛿 along (𝑛 = ∇"𝐷 𝑥 on CIFAR-10 with 𝐾 = 0.83:

Summary
Ø We introduced GraN for piecewise linear discriminators/critics, which 

ensures bounded input-gradients and guarantees a tight local 𝐾-
Lipschitz constraint almost everywhere, yet does not constrain 
individual layers. GraN results in improved GAN performance across 
datasets and loss types.
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Loss function gradient: defined 
by the GAN objective (choice of 
distributional divergence)

Examples:
• Cross-entropy (CE) loss
• Non-saturating (NS) CE loss
• Wasserstein/Hinge losses

"Input-gradient" of Discriminator: 
function of the network 
architecture and constraints

Examples:
• Architectures (ResNet, DCGAN)
• Constraints on the Lipschitz 

constant and/or the input 
gradients ∇"𝐷 𝑥 :
• Gradient Penalty
• Spectral Norm
• GraN (Ours)

Our focus in this work
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Our method: GraN or Gradient Normalization
Ø When the discriminator/critic is a ReLU network, we can guarantee 

bounded gradients and piecewise 𝐾-Lipschitzness by defining the 
normalized discriminator/critic 𝐷(𝑥) as: 

Ø This guarantees a local 𝐾-Lipschitz constraint and bounds the 
gradient norm almost everywhere in 𝑥 since

Discriminator output 
before normalization 

Normalizer
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Ø The generated images and the training dynamics of the generator 
network 𝐺(𝑧) are dependent on the gradients of the loss function 𝐿#:

Constraints to stabilize the gradients 
sent to 𝐺 in training, ensure 𝐷 does 
not get too far ahead of 𝐺 by 
regularization, enforce theoretical 
properties (e.g., WGAN)
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E.g., with the classical minimax objective (Jensen-Shannon divergence):

Ø Recall: we wish to learn generator 𝐺, such that 𝑥 = 𝐺(𝑧) looks like a 
real data sample 𝑥 ~ 𝑃$%&%
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