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Introduction Results on Unconditional Image Generation

» We evaluate image generation across multiple datasets (CIFAR-10,
CIFAR-100, STL-10, Celeb-A, LSUN Bedrooms) and GAN losses.
Check our paper for more detailed results.

(Images taken from StyleGAN and BlgGAN)

Previous works

» Gradient Penalties (GPs):
o Soft-constrain the norm of the input-gradient of discriminator/critic

o Wasserstein-GANs enforce a Lipschitz Constant (LC) = 1. The P,
penalty imposes a two-sided constraint on the grad norm:

P,(x) = ([IVxD()|]2 — 1)7

o Zero-centered gradient penalty:

R,(x) = ||VxD(x)||%

» Spectral Normalization (SN);

o Per-layer 1-Lipschitz constraint on the discriminator/critic using an
estimate of the largest singular value o (WW;) of weight matrix W;:

minmax E, .p . . [logD(x)] + E,.p_ [log(1 — D(G(2))] = L g

» (Generative Adversarial
Networks (GANs) can be quite
effective In unsupervised
Image generation.

» Despite their effectiveness,
GANSs are hard to train (e.qg.,
mode collapse, training
divergence).

» Recall: we wish to learn generator G, such that x = ¢ (z) looks like a

real data sample x ~ P;.¢q SNGAN (FID 13.2)

E.g., with the classical minimax objective (Jensen-Shannon divergence):

G D » Drawbacks:

o GPs do not guarantee exact enforcement and their domain must
shift to catch-up to G in training.

o SN enforces layer-wise 1-Lipschitzness but can cause gradient
attenuation due to progressively shrinking (best) LC with depth.
V,Le(D(x)) = VpLg(D(x)) V,D(x) prog Yy g (best) P

W—/ XH,-/ Our method: GraN or Gradient Normalization

GraND-GAN (FID: 10.8)

» Despite our method enforcing local K-Lipschitzness in theory,
empirically the finite-difference grad norms are well-behaved even
for large steps § along n = V,.D(x) on CIFAR-10 with K = 0.83:

» The generated images and the training dynamics of the generator
network G (z) are dependent on the gradients of the loss function L;:
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» Wasserstein/Hinge losses / constant and/or the input

gradients V., D (x):
Constraints to stabilize the gradients

sent to ¢ In training, ensure D does
not get too far ahead of ¢ by
regularization, enforce theoretical
properties (e.g., WGAN)

» Gradient Penalty
» Spectral Norm
* GraN (Ours)

Our focus in this work

» This guarantees a local K-Lipschitz constraint and bounds the
gradient norm almost everywhere Iin x since
N 2
K ||Vy,D(x)]|

V.D(x = — < K

(with NS CE loss) (with Soft-Hinge loss)

Summary
» We introduced GraN for piecewise linear discriminators/critics, which
ensures bounded input-gradients and guarantees a tight local K-

Lipschitz constraint almost everywhere, yet does not constrain
individual layers. GraN results in improved GAN performance across
datasets and loss types.



