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GraN-GAN: Piecewise Gradient Normalization for
Generative Adversarial Networks
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Introduction

» Generative Adversarial Networks (GANs) are quite effective
IN unsupervised image generation.

Examples of generated images taken from StyleGAN [1] and BigGAN [2]:

[1] https://arxiv.org/pdf/1812.04948.pdf
[2] https://arxiv.org/pdf/1809.11096.pdf
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Introduction

» Despite their effectiveness, GANs are hard to train.
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I Introduction Samsung Research

» The generated images and the training dynamics of the
generator network G(z) are dependent on the gradients of
the loss function Lg:

Vilg(D(x)) = VpLe(D(x)) ViD(x)
\ ] |\ J
| |

Loss function gradient: "Input-gradient” of Discriminator:
defined by the GAN objective function of the network

(choice of distributional divergence)  architecture and constraints

Examples: Examples:

« Cross-entropy (CE) loss « Architectures (ResNet, DCGAN)

« Non-saturating (NS) CE loss « Constraints on the Lipschitz constant
« Wasserstein/Hinge losses and/or the input gradients V,.D(x):

« Gradient Penalty
Constraints to stabilize « Spectral Norm  Our focus in
the gradients sent to /  GraN (Ours) this work

G in training




Lipschitz Constant / Gradient Regularizations
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o Gradient Penalties (GPs)

Soft-constrain the norm of the input-gradient of
discriminator/critic

Wasserstein-GANs enforce a Lipschitz Constant (LC) = 1. _ 132
The P, penalty imposes a two-sided constraint on the P1(x) = ([[VxD(0)[|2 — 1)
grad norm

_ 2
R, Zero-centered gradient penalty: Ri(x) = [|V,D(x)]]2

» Spectral Normalization

Per-layer 1-Lipschitz constraint on the discriminator/critic
using an estimate of the largest singular value o(W;) of W; « W;/a(W;)
weight matrix W;:

o Downsides

|D(x2)—D(x1)]
|22 —x1]|

GPs do not guarantee exact enforcement and their D .
domain must shift to catch-up to G in training. |D|Lip := sup

. . . X1, X
SN enforces layer-wise 1-Lipschitzness but can b

cause gradient attenuation due to progressively W W- - xliin < Wi - xl1:m W5 - x| :
shrinking (smallest) LC with depth. IWilW2 - xluip < W1 - *|uip W2 - Xluip
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Deep Piecewise Linear Networks (PLNs)

» Many modern deep neural networks D(x) with piecewise linear
activation functions are piecewise linear networks (PLNs) in inputs x

» PLNs divide the input space into a set of convex polytopes

» Within each such segment, the network function is linear
D(x) = wy(6) - x + by (6)

where w, (6) and b, (0) are the effective weights and biases of the
overall linear function. (Note: w,(0) is constant in x, within a polytope.)

» The gradient therefore has a simple expression, per segment:

Vxﬁ(x) = w,(0)



Samsung Research

Our method: Gradient Normalization (GraN)

» When the discriminator/critic i1s a ReLU network, we can guarantee
bounded gradients and piecewise K-Lipschitzness by defining the

normalized discriminator/critic D(x) as.:
K

Discriminator output Normalizer = ——
before normalization \ / VDGOl
~ K [[V,D(x)||

D(x) = D(x) i
[VeD()|[? + €

» This guarantees a local K-Lipschitz constraint and bounds the gradient
norm almost everywhere in x since
K ||V, D(x)]|?

V., D(x = = < K
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I Results on Unconditional Image Generation

FID |

Method LSUN CelebA
NSGAN - -
NSGAN-GP - -
NSGAN-SN 74926  14.33

. NSGAN-GP{ 10.483  9.385
\ NSGAN-SNt 12.635  9.644
Y GraND-GAN (Ours) 10.795  9.377

~

* WGAN-GP 13.562 -
_vSNGAN 13.237 13.466
WGAN-GPt 16.884 -
SNGANt 67.346 15.874

GraNC-GAN (Ours) 12.533  12.000

Best, Second best in FID

« Please refer to the paper for more details and results on other datasets and metrics



I GraN-GAN: Empirical Analysis of LC
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« Boxplots of gradient norms across real (blue) and fake (red) samples at 50K iterations

(out of 100K) on CIFAR-10 with K = 0.83:
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NSGAN WGAN-GP SNGAN GraND-GAN GraNC-GAN
(with NS CE loss) (with Soft-Hinge loss)
~ 101 ~ 1071 ~10° Ours: ~ 1077 (K = 0.83)

Order of magnitude of StdDev(||V,D(x)|]) across samples x
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« GraN enforces a bounded gradient norm and, thus, a local K-Lipschitz constraint almost
everywhere.

« However, due to the presence of discontinuities in the normalized discriminator at the
polytope edges, GraN does not guarantee a global Lipschitz constraint

« Nevertheless, empirically the finite-difference grad norms are well-behaved even for
large steps ¢ along 7 = V,.D(x) on CIFAR-10 with K = 0.83:
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« We introduced GraN for piecewise linear discriminators/critics:
« Ensures bounded input-gradients

« Guarantees a tight local K-Lipschitz constraint almost everywhere
« Does not constrain individual layers

« GraN results in improved GAN performance across datasets and
loss types

« Despite discontinuities in D, we empirically observe a bounded
global Lipschitz constant
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Thank you for your attention!




