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Introduction

Generative Adversarial Networks (GANs) are quite effective 
in unsupervised image generation.
Examples of generated images taken from StyleGAN [1] and BigGAN [2]:

[1] https://arxiv.org/pdf/1812.04948.pdf
[2] https://arxiv.org/pdf/1809.11096.pdf
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Introduction

Despite their effectiveness, GANs are hard to train.



Introduction

The generated images and the training dynamics of the 
generator network !(#) are dependent on the gradients of 
the loss function %& :

∇(%& ) * = ∇, %& ) * ∇() *

Loss function gradient: 
defined by the GAN objective 
(choice of distributional divergence)

Examples:
• Cross-entropy (CE) loss
• Non-saturating (NS) CE loss
• Wasserstein/Hinge losses

"Input-gradient" of Discriminator: 
function of the network 
architecture and constraints

Examples:
• Architectures (ResNet, DCGAN)
• Constraints on the Lipschitz constant 

and/or the input gradients ∇() * :
• Gradient Penalty
• Spectral Norm
• GraN (Ours)

Our focus in 
this work

Constraints to stabilize 
the gradients sent to 
! in training



Lipschitz Constant / Gradient Regularizations

Gradient Penalties (GPs)
• Soft-constrain the norm of the input-gradient of 

discriminator/critic
• Wasserstein-GANs enforce a Lipschitz Constant (LC) = 1. 

The P1 penalty imposes a two-sided constraint on the 
grad norm

• R1 Zero-centered gradient penalty:

Spectral Normalization
• Per-layer 1-Lipschitz constraint on the discriminator/critic 

using an estimate of the largest singular value !(#$) of 
weight matrix #$:

Downsides
• GPs do not guarantee exact enforcement and their 

domain must shift to catch-up to & in training.
• SN enforces layer-wise 1-Lipschitzness but can 

cause gradient attenuation due to progressively 
shrinking (smallest) LC with depth.
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Deep Piecewise Linear Networks (PLNs)

Many modern deep neural networks !" # with piecewise linear
activation functions are piecewise linear networks (PLNs) in inputs #
PLNs divide the input space into a set of convex polytopes

Within each such segment, the network function is linear

where $%(') and )%(') are the effective weights and biases of the 
overall linear function. (Note: $%(') is constant in # , within a polytope.)

The gradient therefore has a simple expression, per segment:

!" # = $% ' ⋅ # + )%(')

∇% !" # = $% '



When the discriminator/critic is a ReLU network, we can guarantee 
bounded gradients and piecewise !-Lipschitzness by defining the 
normalized discriminator/critic "($) as: 

Our method: Gradient Normalization (GraN)

Discriminator output 
before normalization 

Normalizer

" $ = '" $ ! ||∇* '" $ ||
||∇* '" $ ||+ + -

≈ !
||∇*'" $ ||

||∇*" $ || = ! ||∇* '" $ ||+
||∇* '" $ ||+ + - < !

This guarantees a local !-Lipschitz constraint and bounds the gradient 
norm almost everywhere in $ since



Results on Unconditional Image Generation

• Please refer to the paper for more details and results on other datasets and metrics

Best, Second best in FID

WGAN-GP (FID: 13.6)

SNGAN (FID: 13.2)

GraND-GAN (FID: 10.8)



GraN-GAN: Empirical Analysis of LC

• Boxplots of gradient norms across real (blue) and fake (red) samples at 50K iterations 
(out of 100K) on CIFAR-10 with ! = 0.83:

!
! − 5×10+,

! + 5×10+,
!

! − 5×10+,

! + 5×10+,

Ours: ~ 10+, (! = 0.83)~ 1012 ~ 10+2 ~ 103

Order of magnitude of StdDev(||∇67(8)||) across samples 8

(with NS CE loss) (with Soft-Hinge loss)



GraN-GAN: Empirical Analysis of LC
• GraN enforces a bounded gradient norm and, thus, a local K-Lipschitz constraint almost 

everywhere.

• However, due to the presence of discontinuities in the normalized discriminator at the 
polytope edges, GraN does not guarantee a global Lipschitz constraint

• Nevertheless, empirically the finite-difference grad norms are well-behaved even for 
large steps ! along "# = ∇&' ( on CIFAR-10 with ) = 0.83:

GraND-GAN
(with NS CE loss)

GraNC-GAN 
(with Soft-Hinge loss)

|' ( + ! "# − '(()|
!

! > 0! > 0



Conclusion

• We introduced GraN for piecewise linear discriminators/critics: 
• Ensures bounded input-gradients 
• Guarantees a tight local !-Lipschitz constraint almost everywhere
• Does not constrain individual layers

• GraN results in improved GAN performance across datasets and 
loss types

• Despite discontinuities in D, we empirically observe a bounded 
global Lipschitz constant



Thank you for your attention!


