GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks

Samsung Research

Introduction

Generative Adversarial Networks (GANs) are quite effective in unsupervised image generation.

Examples of generated images taken from StyleGAN [1] and BigGAN [2]:

Introduction

• Despite their effectiveness, GANs are hard to train.

Introduction

• The generated images and the training dynamics of the generator network G(z) are dependent on the gradients of the loss function L_G :

$$\nabla_{x}L_{G}(D(x)) = \nabla_{D}L_{G}(D(x)) \quad \nabla_{x}D(x)$$

Loss function gradient: defined by the GAN objective (choice of distributional divergence) "Input-gradient" of Discriminator: function of the network architecture and constraints

Examples:

- Cross-entropy (CE) loss
- Non-saturating (NS) CE loss
- Wasserstein/Hinge losses

Constraints to stabilize the gradients sent to *G* in training

Examples:

- Architectures (ResNet, DCGAN)
- Constraints on the Lipschitz constant and/or the input gradients ∇_xD(x):
 - Gradient Penalty
 - Spectral Norm
 Our focus in
 - GraN (Ours)

this work

Lipschitz Constant / Gradient Regularizations

• Gradient Penalties (GPs)

- Soft-constrain the norm of the input-gradient of discriminator/critic
- Wasserstein-GANs enforce a Lipschitz Constant (LC) = 1. The P_1 penalty imposes a two-sided constraint on the grad norm
- R₁ Zero-centered gradient penalty:

Spectral Normalization

• Per-layer 1-Lipschitz constraint on the discriminator/critic using an estimate of the largest singular value $\sigma(W_i)$ of weight matrix W_i :

Downsides

- GPs do not guarantee exact enforcement and their domain must shift to catch-up to *G* in training.
- SN enforces layer-wise 1-Lipschitzness but can cause gradient attenuation due to progressively shrinking (smallest) LC with depth.

 $P_1(x) = (||\nabla_x D(x)||_2 - 1)^2$

Samsung Research

 $R_1(x) = ||\nabla_x D(x)||_2^2$

 $W_i \leftarrow W_i / \sigma(W_i)$

$$|D|_{\text{Lip}} := \sup_{x_1, x_2} \frac{|D(x_2) - D(x_1)|}{|x_2 - x_1|}$$

 $|W_1 W_2 \cdot x|_{\text{Lip}} \le |W_1 \cdot x|_{\text{Lip}} |W_2 \cdot x|_{\text{Lip}}$

Deep Piecewise Linear Networks (PLNs)

- Many modern deep neural networks $\tilde{D}(x)$ with piecewise linear activation functions are piecewise linear networks (PLNs) in inputs x
- PLNs divide the input space into a set of convex polytopes
- Within each such segment, the network function is linear

$$\widetilde{D}(x) = w_x(\theta) \cdot x + b_x(\theta)$$

where w_x(θ) and b_x(θ) are the *effective* weights and biases of the overall linear function. (Note: w_x(θ) is *constant* in x, within a polytope.)
The gradient therefore has a simple expression, per segment:

$$\nabla_x \widetilde{D}(x) = w_x(\theta)$$

Our method: Gradient Normalization (GraN)

 When the discriminator/critic is a ReLU network, we can guarantee bounded gradients and piecewise K-Lipschitzness by defining the normalized discriminator/critic D(x) as:

• This guarantees a local *K*-Lipschitz constraint and bounds the gradient norm almost everywhere in *x* since

$$||\nabla_{x}D(x)|| = \frac{K ||\nabla_{x}\widetilde{D}(x)||^{2}}{||\nabla_{x}\widetilde{D}(x)||^{2} + \epsilon} < K$$

Samsung Research

Results on Unconditional Image Generation

		Method	FID↓	
GraND-GAN (FID: 10.8)			LSUN	CelebA
		NSGAN	_	_
		NSGAN-GP	_	_
	`\	NSGAN-SN	74.926	14.33
		NSGAN-GP†	10.483	9.385
		NSGAN-SN†	12.635	9.644
		GraND-GAN (Ours)	10.795	9.377
WGAN-GP (FID: 13.6)		WGAN-GP SNGAN	13.562	-
		WGAN-GP ⁺	16 884	13.400
	11	SNGAN†	67.346	15.874
		GraNC-GAN (Ours)	12.533	12.000

SNGAN (FID: 13.2)

Best, Second best in FID

• Please refer to the paper for more details and results on other datasets and metrics

GraN-GAN: Empirical Analysis of LC

• Boxplots of **gradient norms** across real (blue) and fake (red) samples at 50K iterations (out of 100K) on CIFAR-10 with K = 0.83:

Order of magnitude of StdDev($||\nabla_x D(x)||$) across samples x

GraN-GAN: Empirical Analysis of LC

- GraN enforces a bounded gradient norm and, thus, a local K-Lipschitz constraint almost everywhere.
- However, due to the presence of discontinuities in the normalized discriminator at the polytope edges, GraN does not guarantee a global Lipschitz constraint
- Nevertheless, empirically the finite-difference grad norms are well-behaved even for large steps δ along $\hat{n} = \nabla_x D(x)$ on CIFAR-10 with K = 0.83:

Conclusion

- We introduced GraN for piecewise linear discriminators/critics:
 - Ensures bounded input-gradients
 - Guarantees a tight local *K*-Lipschitz constraint almost everywhere
 - Does not constrain individual layers
- GraN results in improved GAN performance across datasets and loss types
- Despite discontinuities in D, we empirically observe a bounded global Lipschitz constant

Samsung Research

Thank you for your attention!